A360687 Number of integer partitions of n whose multiplicities have integer median.
1, 2, 3, 4, 5, 9, 10, 16, 22, 34, 42, 65, 80, 115, 145, 195, 240, 324, 396, 519, 635, 814, 994, 1270, 1549, 1952, 2378, 2997, 3623, 4521, 5466, 6764, 8139, 10008, 12023, 14673, 17534, 21273, 25336, 30593, 36302, 43575, 51555, 61570, 72653, 86382, 101676
Offset: 1
Keywords
Examples
The a(1) = 1 through a(8) = 16 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (32) (33) (43) (44) (111) (31) (41) (42) (52) (53) (1111) (2111) (51) (61) (62) (11111) (222) (421) (71) (321) (2221) (431) (2211) (3211) (521) (3111) (4111) (2222) (111111) (211111) (3221) (1111111) (3311) (4211) (5111) (32111) (221111) (311111) (11111111) For example, the partition y = (3,2,2,1) has multiplicities (1,2,1), and the multiset {1,1,2} has median 1, so y is counted under a(8).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],IntegerQ[Median[Length/@Split[#]]]&]],{n,30}]
Comments