A360688 Number of integer partitions of n with integer median of 0-appended first differences.
1, 1, 3, 4, 5, 7, 12, 18, 25, 32, 46, 62, 79, 109, 142, 189, 240, 322, 405, 522, 671, 853, 1053, 1345, 1653, 2081, 2551, 3174, 3878, 4826, 5851, 7219, 8747, 10712, 12936, 15719, 18876, 22872, 27365, 32926, 39253, 47070, 55857, 66676, 79029, 93864, 110832
Offset: 1
Keywords
Examples
The a(1) = 1 through a(8) = 18 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (21) (22) (41) (42) (43) (44) (111) (211) (221) (222) (61) (62) (1111) (311) (321) (322) (332) (11111) (411) (331) (422) (21111) (421) (431) (111111) (511) (521) (3211) (611) (22111) (2222) (31111) (3221) (211111) (4211) (1111111) (22211) (32111) (41111) (221111) (311111) (2111111) (11111111) For example, the partition y = (3,2,2,1) has 0-appended parts (3,2,2,1,0), with differences (1,0,1,1), and the multiset {0,1,1,1} has median 1, so y is counted under a(8).
Crossrefs
A008284 counts partitions by number of parts.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],IntegerQ[Median[Differences[Prepend[Reverse[#],0]]]]&]],{n,30}]
Comments