A360689 Number of integer partitions of n whose distinct parts have non-integer median.
0, 0, 1, 1, 4, 3, 8, 6, 13, 11, 21, 17, 34, 36, 55, 61, 97, 115, 162, 191, 270, 328, 427, 514, 666, 810, 1027, 1211, 1530, 1832, 2260, 2688, 3342, 3952, 4824, 5746, 7010, 8313, 10116, 11915, 14436, 17074, 20536, 24239, 29053, 34170, 40747, 47865, 56830, 66621
Offset: 1
Keywords
Examples
The a(1) = 0 through a(9) = 13 partitions: . . (21) (211) (32) (411) (43) (332) (54) (41) (2211) (52) (611) (63) (221) (21111) (61) (22211) (72) (2111) (322) (41111) (81) (2221) (221111) (441) (4111) (2111111) (522) (22111) (3222) (211111) (6111) (22221) (222111) (411111) (2211111) (21111111) For example, the partition y = (5,3,3,2,1,1) has distinct parts {1,2,3,5}, with median 5/2, so y is counted under a(15).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],!IntegerQ[Median[Union[#]]]&]],{n,30}]
Comments