cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360713 Sum of all prime encoded perfect partitions of n.

Original entry on oeis.org

1, 2, 4, 14, 16, 70, 64, 280, 356, 850, 1024, 4630, 4096, 10738, 20820, 47264, 65536, 176712, 262144, 643214, 1129572, 2246994, 4194304, 9716880, 17011472, 34785250, 68859688, 139829626, 268435456, 560518826, 1073741824, 2192136576, 4335013860, 8679894658
Offset: 0

Views

Author

Alois P. Heinz, Feb 21 2023

Keywords

Crossrefs

Row sums of A258119.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=1,
          mul(ithprime(mul(l[j], j=1..i-1))^(l[i]-1), i=1..nops(l)),
          add(b(n/d, [l[], d]), d=numtheory[divisors](n) minus{1}))
        end:
    a:= n-> b(n+1, []):
    seq(a(n), n=0..33);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 1, Product[Prime[Product[l[[j]], {j, 1, i - 1}]]^(l[[i]] - 1), {i, 1, Length[l]}], Sum[b[n/d, Append[l, d]], {d, Divisors[n]~Complement~{1}}]];
    a[n_] := b[n + 1, {}];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Nov 21 2023, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..A002033(n)} A258119(n,k).