cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A360742 Number T(n,k) of sets of nonempty integer partitions with a total of k parts and total sum of n; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 3, 2, 0, 1, 4, 6, 5, 3, 0, 1, 5, 10, 10, 7, 4, 0, 1, 6, 14, 19, 16, 10, 5, 0, 1, 7, 19, 30, 32, 24, 14, 6, 0, 1, 8, 26, 46, 57, 52, 35, 19, 8, 0, 1, 9, 32, 67, 94, 97, 79, 50, 25, 10, 0, 1, 10, 40, 93, 147, 172, 157, 117, 69, 33, 12
Offset: 0

Views

Author

Alois P. Heinz, Feb 18 2023

Keywords

Examples

			T(6,3) = 10: {[1,1,4]}, {[1,2,3]}, {[2,2,2]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[2],[2,2]}, {[3],[1,2]}, {[4],[1,1]}, {[1],[2],[3]}.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 2,  2;
  0, 1, 3,  3,  2;
  0, 1, 4,  6,  5,  3;
  0, 1, 5, 10, 10,  7,  4;
  0, 1, 6, 14, 19, 16, 10,  5;
  0, 1, 7, 19, 30, 32, 24, 14,  6;
  0, 1, 8, 26, 46, 57, 52, 35, 19,  8;
  0, 1, 9, 32, 67, 94, 97, 79, 50, 25, 10;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A057427, A001477(n-1) for n>=1.
Main diagonal gives A000009.
T(n+2,n+1) gives A036469.
Row sums give A261049.
T(2n,n) gives A360714.
Cf. A000041, A055884 (similar triangle for multisets), A330463.

Programs

  • Maple
    h:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i)))))
        end:
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i), k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i]]]]];
    g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[       g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i], k], {k, 0, j}]]]];
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
    T[n_, k_] := Coefficient[b[n, n], x, k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 15 2023, after Alois P. Heinz *)

Formula

T(n,n) + T(n+1,n) = T(n+2,n+1) for n>=0.

A360468 Number of multisets of nonempty integer partitions with a total of n parts and total sum of 2n.

Original entry on oeis.org

1, 1, 4, 12, 43, 134, 448, 1387, 4347, 13128, 39350, 115285, 334179, 952512, 2684714, 7468402, 20556838, 55963935, 150896053, 402999801, 1066962557, 2801089402, 7295920768, 18859954024, 48404773852, 123381167011, 312438704848, 786231143489, 1966628476977
Offset: 0

Views

Author

Alois P. Heinz, Feb 17 2023

Keywords

Examples

			a(3) = 12: {[1,1,4]}, {[1,2,3]}, {[2,2,2]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[2],[2,2]}, {[3],[1,2]}, {[4],[1,1]}, {[1],[1],[4]}, {[1],[2],[3]}, {[2],[2],[2]}.
		

Crossrefs

Cf. A000041, A008284, A055884, A072233, A360714 (the same for sets).

Formula

a(n) = A055884(2n,n).
Showing 1-2 of 2 results.