A360717 Number of unordered pairs of self-avoiding paths whose sets of nodes are disjoint subsets of a set of n points on a circle; one-node paths are allowed.
0, 1, 6, 33, 185, 1050, 6027, 35014, 205326, 1209375, 7119860, 41744703, 243218703, 1406685280, 8073640785, 45991600860, 260131208396, 1461591509805, 8162196518322, 45327133739245, 250431036147285, 1377169337010390, 7540979990097191, 41130452834689218, 223528009015333050, 1210753768099880875, 6537995998163877312
Offset: 1
Keywords
Examples
a(4) = A359405(4) + 4*A359405(3) + 4*3/2 = 15 + 12 + 6 = 33 with the three summands corresponding to the cases of 4, 3 and 2 used points.
Links
- Ivaylo Kortezov, Sets of Paths between Vertices of a Polygon, Mathematics Competitions, Vol. 35 (2022), No. 2, ISSN:1031-7503, pp. 35-43.
Crossrefs
Formula
a(n) = n*(n-1)*2^(-5)*(5^(n-2) + 6*3^(n-2) + 9).
E.g.f.: exp(x)*((x*exp(2*x) + 3*x)/4)^2/2. - Andrew Howroyd, Feb 19 2023
Comments