A360718 Number of idempotent Boolean relation matrices on [n] that have no proper power primitive.
1, 2, 9, 52, 459, 5526, 91161, 2039024, 62264215, 2618031658, 153147765333, 12544274587956, 1443661355799075, 233590364506712318, 53152637809972391281, 17010099259539378971368, 7660283773351147860024879, 4856904906875123474086041426
Offset: 0
Keywords
Links
- David Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research, National Bureau of Standards, Vol 67B No. 4 Oct-Dec 1963.
Programs
-
Mathematica
nn = 17; A[x_] := Sum[x^n/n! Exp[(2^n - 1) x], {n, 0, nn}]; c[x_] := Log[A[x]] - x; Range[0, nn]! CoefficientList[Series[2 (Exp[x D[c[x], x]/2] - 1) Exp[c[x]] Exp[x] + Exp[c[x]] D[x Exp[x], x], {x, 0, nn}], x]
Formula
E.g.f.: 2(exp(x * c'(x)/2) - 1) exp(c(x)) exp(x) + exp(c(x))*(x exp(x))' where c(x) is the e.g.f. for A002031.
Comments