cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A360727 Expansion of Sum_{k>=0} (k * x * (1 + x^2))^k.

Original entry on oeis.org

1, 1, 4, 28, 264, 3206, 47684, 839249, 17058688, 393216567, 10134918592, 288815780665, 9016571143680, 306027510946208, 11219450971161024, 441846991480590475, 18602901833071633792, 833832341625621777368, 39642569136740054367808
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[1 + Series[Sum[(k*x*(1 + x^2))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 18 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x*(1+x^2))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)^(n-2*k)*binomial(n-2*k, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-2*k)^(n-2*k) * binomial(n-2*k,k).
a(n) ~ n^n * (1 + exp(-2)/n + exp(-4)/(2*n^2)). - Vaclav Kotesovec, Feb 18 2023

A360731 Expansion of Sum_{k>=0} (k * x * (1 + k*x^3))^k.

Original entry on oeis.org

1, 1, 4, 27, 257, 3141, 46899, 827639, 16855357, 389100834, 10040378183, 286386193685, 8947506702834, 303875954083536, 11146559606379269, 439178938765108083, 18497974976610341624, 829420114454360154295, 39445018962975879216867
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x*(1+k*x^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\4, (n-3*k)^(n-2*k)*binomial(n-3*k, k));

Formula

a(n) = Sum_{k=0..floor(n/4)} (n-3*k)^(n-2*k) * binomial(n-3*k,k).

A360748 Expansion of Sum_{k>=0} (x * (1 + k*x^2))^k.

Original entry on oeis.org

1, 1, 1, 2, 5, 10, 21, 53, 133, 327, 861, 2361, 6469, 18168, 52757, 155221, 463077, 1412656, 4379917, 13747504, 43834213, 141866555, 464650309, 1541008295, 5176660997, 17586913779, 60400627453, 209746820056, 735953607173, 2607716976945, 9330605338485
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[Binomial[n - 2*k,k] * (n - 2*k)^k, {k,0,n/3}], {n,1,30}]] (* Vaclav Kotesovec, Feb 20 2023 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (x*(1+k*x^2))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)^k*binomial(n-2*k, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-2*k)^k * binomial(n-2*k,k).
a(n) ~ exp(exp(2/3)*n^(2/3)/3^(2/3) - 5*exp(4/3)*n^(1/3)/(18*3^(1/3)) + 22*exp(2)/81) * n^(n/3) / 3^(n/3 + 1) * (1 + (2*exp(2/3)/3^(5/3) - 3295*exp(8/3)/(2916*3^(2/3)))/n^(1/3) + (3^(2/3)/(8*exp(2/3)) + 35*exp(4/3)/(36*3^(1/3)) + 27379*exp(10/3)/(17496*3^(1/3)) + 10857025*exp(16/3)/(51018336*3^(1/3)))/n^(2/3)). - Vaclav Kotesovec, Feb 20 2023

A360018 Expansion of Sum_{k>=0} (k * x * (1 + (k * x)^2))^k.

Original entry on oeis.org

1, 1, 4, 28, 288, 3854, 63104, 1220729, 27248128, 689446671, 19501121536, 609753349945, 20883798220800, 777529328875208, 31266494467227648, 1350520199148276667, 62360172065142341632, 3065369553470816704832, 159818389764050045894656
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x*(1+(k*x)^2))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)^n*binomial(n-2*k, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-2*k)^n * binomial(n-2*k,k).
a(n) ~ c * (1-2*r)^(2*(1-r)*n) * n^n / ((1-3*r)^((1-3*r)*n) * r^(r*n)), where r = 0.06730326916452804898090832100482072129668759014637687455288... is the root of the equation (1-2*r) * log((1-3*r)^3 / (r*(1-2*r)^2)) = 2 and c = 0.77456580764856204420602709595934338976380573814558378938814706465915... - Vaclav Kotesovec, Feb 20 2023
Showing 1-4 of 4 results.