A361624 Number of distinct prime factors in decimal concatenation of integer (n, n-1, ..., 2, 1, 2, ..., n-1, n) = A007942(n).
0, 2, 3, 2, 5, 3, 3, 4, 3, 3, 3, 3, 1, 4, 6, 2, 2, 3, 4, 7, 4, 8, 2, 3, 4, 6, 5, 7, 5, 6, 6, 3, 5, 7, 4, 5, 8, 5, 6, 6, 3, 3, 7, 7, 7, 7, 10, 7, 6, 6, 7, 4, 5, 5, 7
Offset: 1
Examples
a(4) = 2 since 4321234 = 2 * 2160617; a(6) = 3 since 65432123456 = 2^6 * 7 * 146053847.
Links
- M. Fleuren, Factoring of the Smarandache Mirror Sequence.
- F. Smarandache, Only Problems, Not Solutions!, Mirror sequence, problem 19, page 20.
Programs
-
Python
from sympy import primefactors def A361624(n): return len(primefactors(int(''.join(map(str,range(n,1,-1)))+''.join(map(str,range(1,n+1)))))) # Chai Wah Wu, Mar 21 2023
Extensions
a(36)-a(54) from Amiram Eldar, Mar 19 2023
a(42) corrected by Sean A. Irvine, Sep 26 2023
a(55) from Sean A. Irvine, Oct 16 2023
Comments