cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360746 a(n) is the maximum number of locations 1..n-1 which can be reached starting from a(n-1), where jumps from location i to i +- a(i) are permitted (within 1..n-1); a(1)=1. See example.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 5, 5, 5, 7, 8, 8, 8, 9, 9, 12, 10, 10, 12, 10, 12, 13, 13, 13, 16, 14, 14, 16, 17, 17, 17, 18, 18, 24, 25, 25, 25, 26, 27, 27, 27, 27, 28, 28, 30, 28, 33, 28, 29, 30, 30, 30, 33, 31, 31, 31, 32, 32, 33, 33, 31, 31, 32, 33, 33, 35, 33, 37
Offset: 1

Views

Author

Neal Gersh Tolunsky, Feb 18 2023

Keywords

Examples

			a(7)=5 because we reach 5 terms starting from the most recent term a(6) (each line shows the next unvisited term(s) we can reach from the term(s) in the previous iteration):
1, 1, 2, 3, 4, 4
   1<----------4
1, 1, 2, 3, 4, 4
1<-1->2
1, 1, 2, 3, 4, 4
      2---->4
From the last iteration we can visit no new terms. We reached 5 terms, so a(7)=5:
1, 1, 2, 3, 4, 4
1  1  2     4  4
		

Crossrefs

Programs

  • PARI
    See Links section.
  • Python
    def A(lastn,mode=0):
      a,n,t=[1],0,1
      while n0:
          if not d[-1][-1] in rr:rr.append(d[-1][-1])
          if d[-1][-1]-a[d[-1][-1]]>=0:
            if d[-1].count(d[-1][-1]-a[d[-1][-1]])0: d.append(d[-1][:])
              d[-1].append(d[-1][-1]+a[d[-1][-1]])
              r=1
          if g>0:
            if r>0: d[-2].append(d[-2][-1]-a[d[-2][-1]])
            else: d[-1].append(d[-1][-1]-a[d[-1][-1]])
            r=1
          if r==0:d.pop()
          r,g=0,0
        a.append(len(rr))
        n+=1
        print(n+1,a[n])
        if mode>0: print(a)
      return a  # S. Brunner, Feb 26 2023