cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360757 Numbers k for which the arithmetic derivative of k is a Sophie Germain prime (A005384).

Original entry on oeis.org

6, 42, 154, 182, 222, 231, 286, 357, 434, 442, 455, 483, 582, 595, 645, 690, 742, 762, 770, 806, 861, 906, 969, 987, 994, 1045, 1066, 1086, 1122, 1162, 1463, 1534, 1547, 1554, 1582, 1738, 1742, 1771, 1798, 1869, 1905, 2065, 2121, 2193, 2265, 2274, 2282, 2365
Offset: 1

Views

Author

Marius A. Burtea, Mar 01 2023

Keywords

Examples

			6' = 5 is prime and 2*6' + 1 = 2*5 + 1 = 11 is prime, so 6 is a term.
42' = 41 is prime and 2*42' + 1 = 2*41 + 1 = 83 is prime, so 42 is a term.
		

Crossrefs

Subsequence of A157037.

Programs

  • Magma
    f:=func; [p:p in [1..2500]| IsPrime(Floor(f(p))) and IsPrime(2*Floor(f(p))+1) ];
  • Maple
    filter:= proc(n) local np,t;
      np:= n*add(t[2]/t[1], t = ifactors(n)[2]);
      isprime(np) and isprime(2*np+1)
    end proc:
    select(filter, [$1..3000]); # Robert Israel, Mar 18 2023
  • Mathematica
    d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[2400], PrimeQ[d1 = d[#]] && PrimeQ[2*d1 + 1] &] (* Amiram Eldar, Mar 01 2023 *)