A360757 Numbers k for which the arithmetic derivative of k is a Sophie Germain prime (A005384).
6, 42, 154, 182, 222, 231, 286, 357, 434, 442, 455, 483, 582, 595, 645, 690, 742, 762, 770, 806, 861, 906, 969, 987, 994, 1045, 1066, 1086, 1122, 1162, 1463, 1534, 1547, 1554, 1582, 1738, 1742, 1771, 1798, 1869, 1905, 2065, 2121, 2193, 2265, 2274, 2282, 2365
Offset: 1
Keywords
Examples
6' = 5 is prime and 2*6' + 1 = 2*5 + 1 = 11 is prime, so 6 is a term. 42' = 41 is prime and 2*42' + 1 = 2*41 + 1 = 83 is prime, so 42 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
f:=func
; [p:p in [1..2500]| IsPrime(Floor(f(p))) and IsPrime(2*Floor(f(p))+1) ]; -
Maple
filter:= proc(n) local np,t; np:= n*add(t[2]/t[1], t = ifactors(n)[2]); isprime(np) and isprime(2*np+1) end proc: select(filter, [$1..3000]); # Robert Israel, Mar 18 2023
-
Mathematica
d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[2400], PrimeQ[d1 = d[#]] && PrimeQ[2*d1 + 1] &] (* Amiram Eldar, Mar 01 2023 *)