cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360763 Number T(n,k) of multisets of nonempty strict integer partitions with a total of k parts and total sum of n; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 4, 2, 1, 0, 1, 5, 8, 5, 2, 1, 0, 1, 6, 11, 10, 5, 2, 1, 0, 1, 7, 16, 18, 11, 5, 2, 1, 0, 1, 8, 22, 28, 22, 12, 5, 2, 1, 0, 1, 9, 28, 45, 39, 24, 12, 5, 2, 1, 0, 1, 10, 35, 63, 67, 46, 25, 12, 5, 2, 1, 0, 1, 11, 44, 89, 106, 86, 50, 26, 12, 5, 2, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2023

Keywords

Comments

T(n,k) is defined for all n >= 0 and k >= 0. Terms that are not in the triangle are zero.
Reversed rows and also the columns converge to A360785.

Examples

			T(6,1) = 1: {[6]}.
T(6,2) = 5: {[1],[5]}, {[2],[4]}, {[3],[3]}, {[1,5]}, {[2,4]}.
T(6,3) = 8: {[1,2,3]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[3],[1,2]}, {[1],[1],[4]}, {[1],[2],[3]}, {[2],[2],[2]}.
T(6,4) = 5: {[1],[1],[1],[3]}, {[1],[1],[2],[2]}, {[1],[1],[1,3]}, {[1],[2],[1,2]}, {[1,2],[1,2]}.
T(6,5) = 2: {[1],[1],[1],[1],[2]}, {[1],[1],[1],[1,2]}.
T(6,6) = 1: {[1],[1],[1],[1],[1],[1]}.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 2,  1;
  0, 1, 3,  2,  1;
  0, 1, 4,  4,  2,  1;
  0, 1, 5,  8,  5,  2,  1;
  0, 1, 6, 11, 10,  5,  2,  1;
  0, 1, 7, 16, 18, 11,  5,  2, 1;
  0, 1, 8, 22, 28, 22, 12,  5, 2, 1;
  0, 1, 9, 28, 45, 39, 24, 12, 5, 2, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A057427, A001477(n-1) for n>=1.
Row sums give A089259.
T(2n,n) gives A360784.
T(3n,2n) gives A360785.

Programs

  • Maple
    h:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i-1)))))
        end:
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i - 1]]]]];
    g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i] + k - 1, k], {k, 0, j}]]]];
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
    T[n_] := CoefficientList[b[n, n], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Sep 12 2023, after Alois P. Heinz *)

Formula

T(3n,2n) = A360785(n) = T(3n+j,2n+j) for j>=0.