A360763 Number T(n,k) of multisets of nonempty strict integer partitions with a total of k parts and total sum of n; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 4, 2, 1, 0, 1, 5, 8, 5, 2, 1, 0, 1, 6, 11, 10, 5, 2, 1, 0, 1, 7, 16, 18, 11, 5, 2, 1, 0, 1, 8, 22, 28, 22, 12, 5, 2, 1, 0, 1, 9, 28, 45, 39, 24, 12, 5, 2, 1, 0, 1, 10, 35, 63, 67, 46, 25, 12, 5, 2, 1, 0, 1, 11, 44, 89, 106, 86, 50, 26, 12, 5, 2, 1
Offset: 0
Examples
T(6,1) = 1: {[6]}. T(6,2) = 5: {[1],[5]}, {[2],[4]}, {[3],[3]}, {[1,5]}, {[2,4]}. T(6,3) = 8: {[1,2,3]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[3],[1,2]}, {[1],[1],[4]}, {[1],[2],[3]}, {[2],[2],[2]}. T(6,4) = 5: {[1],[1],[1],[3]}, {[1],[1],[2],[2]}, {[1],[1],[1,3]}, {[1],[2],[1,2]}, {[1,2],[1,2]}. T(6,5) = 2: {[1],[1],[1],[1],[2]}, {[1],[1],[1],[1,2]}. T(6,6) = 1: {[1],[1],[1],[1],[1],[1]}. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 1, 2, 1; 0, 1, 3, 2, 1; 0, 1, 4, 4, 2, 1; 0, 1, 5, 8, 5, 2, 1; 0, 1, 6, 11, 10, 5, 2, 1; 0, 1, 7, 16, 18, 11, 5, 2, 1; 0, 1, 8, 22, 28, 22, 12, 5, 2, 1; 0, 1, 9, 28, 45, 39, 24, 12, 5, 2, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
h:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i-1))))) end: g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add( g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j)))) end: b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..12);
-
Mathematica
h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i - 1]]]]]; g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i] + k - 1, k], {k, 0, j}]]]]; b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]]; T[n_] := CoefficientList[b[n, n], x]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Sep 12 2023, after Alois P. Heinz *)
Formula
T(3n,2n) = A360785(n) = T(3n+j,2n+j) for j>=0.
Comments