cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A363217 Odd powerful numbers that are not powers of primes.

Original entry on oeis.org

225, 441, 675, 1089, 1125, 1225, 1323, 1521, 2025, 2601, 3025, 3087, 3249, 3267, 3375, 3969, 4225, 4563, 4761, 5625, 5929, 6075, 6125, 7225, 7569, 7803, 8281, 8575, 8649, 9025, 9261, 9747, 9801, 10125, 11025, 11907, 11979, 12321, 13225, 13689, 14161, 14283, 15125, 15129, 16641, 16875, 17689, 18225, 19773
Offset: 1

Views

Author

Michael De Vlieger, May 21 2023

Keywords

Comments

This sequence is { A286708 INTERSECT A005408 } = { A001694 INTERSECT A360769 }.
Subset of A001694, A062739, A126706, and A360769.

Examples

			a(1) = 225 = 3^2 * 5^2, the smallest odd number with multiple distinct prime factors, each of which have multiplicity exceeding 1.
a(2) = 441 = 3^2 * 7^2,
a(3) = 675 = 3^3 * 5^2, etc.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 20000}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], And[OddQ[#], ! PrimePowerQ[#]] &] ]
  • PARI
    isok(k) = (k>1) && (k%2) && ispowerful(k) && !isprimepower(k); \\ Michel Marcus, May 28 2023

Formula

This sequence is { k = a^2*b^3 : a >= 1, b >= 1, omega(k) > 1, k mod 2 = 1 }.
Sum_{n>=1} 1/a(n) = 2*zeta(2)*zeta(3)/(3*zeta(6)) - 1/2 - Sum_{p prime} 1/(p*(p-1)) = (2/3) * A082695 - 1/2 - A136141 = 0.0225742... . - Amiram Eldar, May 28 2023

A377590 Numbers k neither squarefree nor prime powers such that there exist no numbers m such that rad(m) | k and Omega(m) > Omega(k), where rad = A007947 and Omega = A001222.

Original entry on oeis.org

12, 24, 45, 48, 63, 75, 96, 135, 175, 189, 192, 225, 245, 275, 325, 384, 405, 425, 475, 539, 567, 575, 605, 637, 675, 768, 833, 847, 875, 931, 1127, 1183, 1215, 1225, 1375, 1421, 1519, 1536, 1573, 1625, 1701, 1715, 1813, 1859, 1925, 2009, 2023, 2025, 2057, 2107
Offset: 1

Views

Author

Michael De Vlieger, Nov 02 2024

Keywords

Comments

This sequence contains numbers k in A126706 for which A376846(k) = 0; A376846(k) = 0 for prime powers k or squarefree numbers k (i.e., k in A303554).
It is sufficient to determine floor(log k / log p) <= Omega(k) for p = lpf(k) = A020639(k).
Sequence contains numbers k of the form 2^j*3, j > 1, i.e., A007283 \ {3, 6} is a proper subset of this sequence, since 2^(j+1) < 2^j*3 and j+1 = Omega(2^j*3).
The numbers k that remain in the sequence ({a(n)} \ A007283) are odd, that is, in A360769. For k = 2^j*p, prime p > 3, we have j+floor(log_2 p) > j+1, since log_2 p > 2, therefore we see m = 2^(j+floor(log_2 p)) < 2^j*p, with Omega(m) > Omega(k).

Examples

			12 is in the sequence since 2^3 < 12, and Omega(2^3) = Omega(12) = 3.
20 is not in the sequence since 2^4 < 20 and Omega(2^4) = 4, but Omega(20) = 3.
45 is in the sequence since 3^3 < 45, and Omega(3^3) = Omega(45) = 3.
375 = 3*5^3 is not in the sequence since 3^5 < 375 and Omega(3^5) = 5, but Omega(345) = 4.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[4000], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{n, k}, NoneTrue[FactorInteger[n][[All, 1]], Floor@ Log[#, n] > k &]] @@ {#, PrimeOmega[#]} &]

A363101 Even numbers that are neither prime powers nor squarefree.

Original entry on oeis.org

12, 18, 20, 24, 28, 36, 40, 44, 48, 50, 52, 54, 56, 60, 68, 72, 76, 80, 84, 88, 90, 92, 96, 98, 100, 104, 108, 112, 116, 120, 124, 126, 132, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 192, 196, 198, 200, 204, 208, 212, 216, 220, 224, 228, 232, 234, 236, 240, 242
Offset: 1

Views

Author

Michael De Vlieger, May 19 2023

Keywords

Comments

Even numbers k such that A001222(k) > A001221(k) > 1.

Crossrefs

Intersection of A013929 and A177712.

Programs

  • Mathematica
    Select[Range[2, 242, 2], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]

A361487 Odd numbers k that are neither prime powers nor squarefree, such that k/rad(k) >= q, where rad(k) = A007947(k) and prime q = A119288(k).

Original entry on oeis.org

75, 135, 147, 189, 225, 245, 363, 375, 405, 441, 507, 525, 567, 605, 675, 735, 825, 845, 847, 867, 875, 891, 945, 975, 1029, 1053, 1083, 1089, 1125, 1183, 1215, 1225, 1275, 1323, 1375, 1377, 1425, 1445, 1485, 1521, 1539, 1575, 1587, 1617, 1625, 1701, 1715, 1725, 1755, 1805, 1815, 1859, 1863, 1875, 1911
Offset: 1

Views

Author

Michael De Vlieger, Mar 29 2023

Keywords

Comments

Odd terms in A360768, which itself is a proper subsequence of A126706.
Odd numbers k such that there exists j such that 1 < j < k and rad(j) = rad(k), but j does not divide k.

Examples

			a(1) = 75, since 75/15 >= 5. We note that rad(45) = rad(75) = 15, yet 45 does not divide 75.
a(2) = 135, since 135/15 >= 5. Note: rad(75) = rad(135) = 15, yet 45 does not divide 135.
a(3) = 147, since 147/21 >= 7. Note: rad(63) = rad(147) = 21, yet 147 mod 63 = 21.
Chart below shows k < a(n) such that rad(k) = rad(n), yet k does not divide n:
      75 | 45   .
     135 |  .   .  75   .   .
     147 |  .  63   .   .   .   .
     189 |  .   .   .   .   .   . 147   .   .   .
a(n) 225 |  .   .   .   .   . 135   .   .   .   .   .   .
     245 |  .   .   .   .   .   .   .   .   . 175   .   .   .
     363 |  .   .   .  99   .   .   .   .   .   .   .   .   .   .   .   .   . 297
     375 | 45   .   .   .   . 135   .   .   .   .   .   . 225   .   .   .   .   .
     ----------------------------------------------------------------------------
         | 45  63  75  99 117 135 147 153 171 175 189 207 225 245 261 275 279 297
                                        k in A360769
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[1, 2000, 2], Nor[SquareFreeQ[#], PrimePowerQ[#]] &], #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]
  • PARI
    is(k) = { if (k%2, my (f = factor(k)); #f~ > 1 && k/vecprod(f[,1]~) >= f[2, 1], 0); } \\ Rémy Sigrist, Mar 29 2023

Formula

This sequence is { odd k in A126706 : k/A007947(k) >= A119288(k) }.
Showing 1-4 of 4 results.