cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360774 Expansion of Sum_{k>=0} (x * (k + x))^k.

Original entry on oeis.org

1, 1, 5, 31, 284, 3390, 49878, 871465, 17620450, 404554997, 10394845097, 295485704544, 9205957047661, 311922101632409, 11419004058232897, 449146827324857447, 18889836751306735360, 845892838094616177138, 40182354573647684880446
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (x*(k+x))^k))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-k)^(n-2*k)*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-k)^(n-2*k) * binomial(n-k,k).

A360776 Expansion of Sum_{k>=0} (x * (k + x^3))^k.

Original entry on oeis.org

1, 1, 4, 27, 257, 3129, 46683, 823799, 16780342, 387467154, 10000823639, 285328449077, 8916487888186, 302885106945216, 11112292144568909, 437902806653498835, 18447046953316227905, 827251374022851280231, 39346845973273509115167
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (x*(k+x^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\4, (n-3*k)^(n-4*k)*binomial(n-3*k, k));

Formula

a(n) = Sum_{k=0..floor(n/4)} (n-3*k)^(n-4*k) * binomial(n-3*k,k).

A360770 Expansion of Sum_{k>0} (x * (k + x^k))^k.

Original entry on oeis.org

1, 5, 27, 260, 3125, 46684, 823543, 16777472, 387420498, 10000003125, 285311670611, 8916100495009, 302875106592253, 11112006826381559, 437893890380860625, 18446744073726328848, 827240261886336764177, 39346408075296925015353
Offset: 1

Views

Author

Seiichi Manyama, Feb 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(# - n/# + 1) * Binomial[#, n/# - 1] &]; Array[a, 20] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (x*(k+x^k))^k))
    
  • PARI
    a(n) = sumdiv(n, d, d^(d-n/d+1)*binomial(d, n/d-1));

Formula

a(n) = Sum_{d|n} d^(d-n/d+1) * binomial(d,n/d-1).
If p is an odd prime, a(p) = p^p.
Showing 1-3 of 3 results.