A360785 Number of multisets of nonempty strict integer partitions with a total of 2n parts and total sum of 3n.
1, 2, 5, 12, 26, 54, 112, 220, 427, 812, 1518, 2790, 5074, 9096, 16144, 28360, 49367, 85180, 145867, 247886, 418426, 701702, 1169673, 1938498, 3195497, 5240386, 8552308, 13892638, 22468406, 36184636, 58040397, 92737842, 147631545, 234184172, 370215442, 583343070
Offset: 0
Keywords
Examples
a(2) = 5: {[1],[1],[1],[3]}, {[1],[1],[2],[2]}, {[1],[1],[1,3]}, {[1],[2],[1,2]}, {[1,2],[1,2]}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Programs
-
Maple
h:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i-1))))) end: g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add( g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j)))) end: b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i)))) end: a:= n-> coeff(b(3*n$2), x, 2*n): seq(a(n), n=0..35);
-
Mathematica
h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i - 1]]]]]; g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i] + k - 1, k], {k, 0, j}]]]]; b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]]; a[n_] := Coefficient[b[3n, 3n], x, 2n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Dec 09 2023, after Alois P. Heinz *)