cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360793 Numbers of the form m*p^3, where m > 1 is squarefree and prime p does not divide m.

Original entry on oeis.org

24, 40, 54, 56, 88, 104, 120, 135, 136, 152, 168, 184, 189, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 344, 351, 375, 376, 378, 408, 424, 440, 456, 459, 472, 488, 513, 520, 536, 552, 568, 584, 594, 616, 621, 632, 664, 680, 686, 696, 702, 712, 728, 744, 750
Offset: 1

Views

Author

David James Sycamore, Feb 21 2023

Keywords

Comments

Can be regarded as the cube version of A072357. Subsequence of A036537 (the number of divisors of any term is a power of 2). Also a subsequence of A048109.
Subsequence of A126706. - Michael De Vlieger, Feb 22 2023
The asymptotic density of this sequence is Sum_{p prime} d(p) = 0.074177741367259601921..., where d(p) = 1/(p^2*(p+1)*zeta(2)) is the density of the subset of terms that are divisible by p^3. - Amiram Eldar, Aug 01 2024

Examples

			1608 = 2^3*201 is in this sequence (p = 2; m = 201 is odd and squarefree).
A001221(201) = 2, therefore 1608 has 2^(2+2) = 16 divisors.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= sort(ifactors(n)[2][..,2]);
      nops(F) >= 2 and F[-1] = 3 and F[-2] = 1
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 01 2023
  • Mathematica
    Select[Range[1000], (e = Sort[FactorInteger[#][[;; , 2]]])[[-1]] == 3 && Length[e] > 1 && e[[-2]] == 1 &] (* Amiram Eldar, Feb 21 2023 *)
  • PARI
    isok(k) = if (k>1, my(f=factor(k), v=f[,2], m); if (vecmax(v)==3, w=select(x->(x==3), v, 1); if (#w == 1, m = k/f[w[1],1]^3; (m>1) && issquarefree(m)))); \\ Michel Marcus, Feb 21 2023
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A360793_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:len(f:=sorted(factorint(n).values(),reverse=True))>1 and f[0]==3 and f[1] == 1,count(max(startvalue,1)))
    A360793_list = list(islice(A360793_gen(),20)) # Chai Wah Wu, Feb 28 2023
    
  • Python
    from math import isqrt
    from sympy import mobius, primepi, integer_nthroot, primerange
    def A360793(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return int(n+x+primepi(integer_nthroot(x,3)[0])+sum(sum(-g(x//p**j) if j&1 else g(x//p**j) for j in range(3,x.bit_length())) for p in primerange(isqrt(x)+1)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 25 2025

Formula

For a(n) = m*p^3, A000005(a(n)) = 2^k, where k = 2 + A001221(m).
Equals A048109 \ A030078.