A360793 Numbers of the form m*p^3, where m > 1 is squarefree and prime p does not divide m.
24, 40, 54, 56, 88, 104, 120, 135, 136, 152, 168, 184, 189, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 344, 351, 375, 376, 378, 408, 424, 440, 456, 459, 472, 488, 513, 520, 536, 552, 568, 584, 594, 616, 621, 632, 664, 680, 686, 696, 702, 712, 728, 744, 750
Offset: 1
Keywords
Examples
1608 = 2^3*201 is in this sequence (p = 2; m = 201 is odd and squarefree). A001221(201) = 2, therefore 1608 has 2^(2+2) = 16 divisors.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) local F; F:= sort(ifactors(n)[2][..,2]); nops(F) >= 2 and F[-1] = 3 and F[-2] = 1 end proc: select(filter, [$1..1000]); # Robert Israel, Mar 01 2023
-
Mathematica
Select[Range[1000], (e = Sort[FactorInteger[#][[;; , 2]]])[[-1]] == 3 && Length[e] > 1 && e[[-2]] == 1 &] (* Amiram Eldar, Feb 21 2023 *)
-
PARI
isok(k) = if (k>1, my(f=factor(k), v=f[,2], m); if (vecmax(v)==3, w=select(x->(x==3), v, 1); if (#w == 1, m = k/f[w[1],1]^3; (m>1) && issquarefree(m)))); \\ Michel Marcus, Feb 21 2023
-
Python
from itertools import count, islice from sympy import factorint def A360793_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:len(f:=sorted(factorint(n).values(),reverse=True))>1 and f[0]==3 and f[1] == 1,count(max(startvalue,1))) A360793_list = list(islice(A360793_gen(),20)) # Chai Wah Wu, Feb 28 2023
-
Python
from math import isqrt from sympy import mobius, primepi, integer_nthroot, primerange def A360793(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) def f(x): return int(n+x+primepi(integer_nthroot(x,3)[0])+sum(sum(-g(x//p**j) if j&1 else g(x//p**j) for j in range(3,x.bit_length())) for p in primerange(isqrt(x)+1))) return bisection(f,n,n) # Chai Wah Wu, Feb 25 2025
Comments