A360825 a(n) is the remainder after dividing n! by its least nondivisor.
1, 1, 2, 2, 4, 1, 6, 2, 5, 1, 10, 1, 12, 3, 8, 1, 16, 1, 18, 4, 11, 1, 22, 22, 6, 5, 14, 1, 28, 1, 30, 33, 20, 31, 18, 1, 36, 7, 20, 1, 40, 1, 42, 8, 23, 1, 46, 19, 11, 9, 26, 1, 52, 30, 27, 10, 29, 1, 58, 1, 60, 43, 53, 56, 33, 1, 66, 12, 35, 1, 70, 1, 72, 27, 23
Offset: 0
Keywords
Examples
a(5) = 5! mod 7 = 120 mod 7 = 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a[n_] := Module[{f = n!, m = n + 1}, While[Divisible[f, m], m++]; Mod[f, m]]; Array[a, 100, 0] (* Amiram Eldar, Feb 22 2023 *)
-
PARI
a(n) = my(k=1, r); while(!(r=(n! % (n+k))), k++); r; \\ Michel Marcus, Feb 22 2023
-
Python
from functools import reduce from sympy import nextprime def A360825(n): if n == 3: return 2 m = nextprime(n) return reduce(lambda i, j: i*j%m,range(2,n+1),1)%m # Chai Wah Wu, Feb 22 2023
-
Python
from functools import reduce from sympy import nextprime def A360825(n): if n == 3: return 2 m = nextprime(n) return (m-1)*pow(reduce(lambda i,j:i*j%m,range(n+1,m),1),-1,m)%m # Chai Wah Wu, Feb 23 2023
Comments