cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360849 Array read by antidiagonals: T(m,n) is the number of (undirected) cycles in the complete bipartite graph K_{m,n}.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 6, 15, 6, 0, 0, 10, 42, 42, 10, 0, 0, 15, 90, 204, 90, 15, 0, 0, 21, 165, 660, 660, 165, 21, 0, 0, 28, 273, 1650, 3940, 1650, 273, 28, 0, 0, 36, 420, 3486, 15390, 15390, 3486, 420, 36, 0, 0, 45, 612, 6552, 45150, 113865, 45150, 6552, 612, 45, 0
Offset: 1

Views

Author

Andrew Howroyd, Feb 23 2023

Keywords

Comments

Also, T(m,n) is the number of chordless cycles of length >= 4 in the m X n rook graph.

Examples

			Array begins:
========================================================
m\n| 1  2   3    4      5       6        7         8 ...
---+----------------------------------------------------
1  | 0  0   0    0      0       0        0         0 ...
2  | 0  1   3    6     10      15       21        28 ...
3  | 0  3  15   42     90     165      273       420 ...
4  | 0  6  42  204    660    1650     3486      6552 ...
5  | 0 10  90  660   3940   15390    45150    109480 ...
6  | 0 15 165 1650  15390  113865   526155   1776180 ...
7  | 0 21 273 3486  45150  526155  4662231  24864588 ...
8  | 0 28 420 6552 109480 1776180 24864588 256485040 ...
  ...
Lower half of array as triangle T(n,k) for 1 <= k <= n begins:
  0;
  0,  1;
  0,  3,  15;
  0,  6,  42,  204;
  0, 10,  90,  660,  3940;
  0, 15, 165, 1650, 15390, 113865;
  0, 21, 273, 3486, 45150, 526155, 4662231;
  ...
		

Crossrefs

Rows 1..3 are A000004, A000217(n-1), A059270(n-1).
Main diagonal is A070968.
Cf. A269562, A286418, A360850 (paths), A360853.

Programs

  • PARI
    T(m,n) = sum(j=2, min(m,n), binomial(m,j)*binomial(n,j)*j!*(j-1)!/2)

Formula

T(m,n) = Sum_{j=2..min(m,n)} binomial(m,j)*binomial(n,j)*j!*(j-1)!/2.
T(m,n) = T(n,m).