A360849 Array read by antidiagonals: T(m,n) is the number of (undirected) cycles in the complete bipartite graph K_{m,n}.
0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 6, 15, 6, 0, 0, 10, 42, 42, 10, 0, 0, 15, 90, 204, 90, 15, 0, 0, 21, 165, 660, 660, 165, 21, 0, 0, 28, 273, 1650, 3940, 1650, 273, 28, 0, 0, 36, 420, 3486, 15390, 15390, 3486, 420, 36, 0, 0, 45, 612, 6552, 45150, 113865, 45150, 6552, 612, 45, 0
Offset: 1
Examples
Array begins: ======================================================== m\n| 1 2 3 4 5 6 7 8 ... ---+---------------------------------------------------- 1 | 0 0 0 0 0 0 0 0 ... 2 | 0 1 3 6 10 15 21 28 ... 3 | 0 3 15 42 90 165 273 420 ... 4 | 0 6 42 204 660 1650 3486 6552 ... 5 | 0 10 90 660 3940 15390 45150 109480 ... 6 | 0 15 165 1650 15390 113865 526155 1776180 ... 7 | 0 21 273 3486 45150 526155 4662231 24864588 ... 8 | 0 28 420 6552 109480 1776180 24864588 256485040 ... ... Lower half of array as triangle T(n,k) for 1 <= k <= n begins: 0; 0, 1; 0, 3, 15; 0, 6, 42, 204; 0, 10, 90, 660, 3940; 0, 15, 165, 1650, 15390, 113865; 0, 21, 273, 3486, 45150, 526155, 4662231; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Eric Weisstein's World of Mathematics, Chordless Cycle.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Rook Graph.
Crossrefs
Programs
-
PARI
T(m,n) = sum(j=2, min(m,n), binomial(m,j)*binomial(n,j)*j!*(j-1)!/2)
Formula
T(m,n) = Sum_{j=2..min(m,n)} binomial(m,j)*binomial(n,j)*j!*(j-1)!/2.
T(m,n) = T(n,m).
Comments