cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360851 Array read by antidiagonals: T(m,n) is the number of induced paths in the rook graph K_m X K_n.

Original entry on oeis.org

0, 1, 1, 3, 8, 3, 6, 27, 27, 6, 10, 64, 126, 64, 10, 15, 125, 426, 426, 125, 15, 21, 216, 1125, 2208, 1125, 216, 21, 28, 343, 2493, 8830, 8830, 2493, 343, 28, 36, 512, 4872, 27456, 55700, 27456, 4872, 512, 36, 45, 729, 8676, 70434, 265635, 265635, 70434, 8676, 729, 45
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2023

Keywords

Comments

Paths of length zero are not counted here.

Examples

			Array begins:
===================================================
m\n|  1   2    3     4      5        6        7 ...
---+-----------------------------------------------
1  |  0   1    3     6     10       15       21 ...
2  |  1   8   27    64    125      216      343 ...
3  |  3  27  126   426   1125     2493     4872 ...
4  |  6  64  426  2208   8830    27456    70434 ...
5  | 10 125 1125  8830  55700   265635   961975 ...
6  | 15 216 2493 27456 265635  2006280 11158161 ...
7  | 21 343 4872 70434 961975 11158161 98309778 ...
  ...
		

Crossrefs

Main diagonal is A360852.
Rows 1..2 are A000217(n-1), A000578.

Programs

  • PARI
    T(m,n) = sum(j=1, min(m,n), j!^2*binomial(m,j)*binomial(n,j)*(1 + (m+n)/2 - j)) - m*n

Formula

T(m,n) = A360850(m,n) - A003991(m,n).
T(m,n) = -m*n + Sum_{j=1..min(m,n)} j!^2*binomial(m,j)*binomial(n,j)*(1 + (m+n)/2 - j).
T(m,n) = T(n,m).