A360851 Array read by antidiagonals: T(m,n) is the number of induced paths in the rook graph K_m X K_n.
0, 1, 1, 3, 8, 3, 6, 27, 27, 6, 10, 64, 126, 64, 10, 15, 125, 426, 426, 125, 15, 21, 216, 1125, 2208, 1125, 216, 21, 28, 343, 2493, 8830, 8830, 2493, 343, 28, 36, 512, 4872, 27456, 55700, 27456, 4872, 512, 36, 45, 729, 8676, 70434, 265635, 265635, 70434, 8676, 729, 45
Offset: 1
Examples
Array begins: =================================================== m\n| 1 2 3 4 5 6 7 ... ---+----------------------------------------------- 1 | 0 1 3 6 10 15 21 ... 2 | 1 8 27 64 125 216 343 ... 3 | 3 27 126 426 1125 2493 4872 ... 4 | 6 64 426 2208 8830 27456 70434 ... 5 | 10 125 1125 8830 55700 265635 961975 ... 6 | 15 216 2493 27456 265635 2006280 11158161 ... 7 | 21 343 4872 70434 961975 11158161 98309778 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Eric Weisstein's World of Mathematics, Rook Graph.
- Wikipedia, Induced path.
Crossrefs
Programs
-
PARI
T(m,n) = sum(j=1, min(m,n), j!^2*binomial(m,j)*binomial(n,j)*(1 + (m+n)/2 - j)) - m*n
Comments