A360904 Numbers k such that k and k+1 both have the same number of squarefree divisors and powerful divisors.
48, 2511, 5328, 6723, 7856, 10287, 15471, 15632, 16640, 18063, 20816, 28592, 33124, 36368, 38799, 39600, 40400, 40816, 54512, 57121, 60624, 67472, 75248, 79375, 83024, 88047, 93231, 101168, 119375, 126927, 134703, 137456, 146688, 147824, 148224, 154448, 160624
Offset: 1
Keywords
Examples
48 is a term since A034444(48) = A005361(48) = 4 and A034444(49) = A005361(49) = 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Times @@ e == 2^Length[e]]; q[1] = True; seq[kmax_] := Module[{s = {}, k = 1, q1 = q[1], q2}, Do[q2 = q[k]; If[q1 && q2, AppendTo[s, k-1]]; q1 = q2, {k, 2, kmax}]; s]; seq[2*10^5]
-
PARI
is(k) = {my(e = factor(k)[,2]); prod(i = 1, #e, e[i]) == 2^#e; } lista(kmax) = {my(is1 = is(1), i2); for(k=2, kmax, is2 = is(k); if(is1 && is2, print1(k-1, ", ")); is1 = is2); }
Comments