cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360907 Numbers k such that k and k+1 both have the same number of cubefree divisors and 3-full divisors.

Original entry on oeis.org

916352, 3002751, 13080447, 22598271, 26110592, 28909952, 45706112, 49472127, 52890624, 53391231, 56190591, 58471552, 63468927, 65148543, 67947903, 69780608, 84744063, 89376128, 93142143, 94974848, 143530623, 143683712, 145770111, 155847807, 165925503, 177109375
Offset: 1

Views

Author

Amiram Eldar, Feb 25 2023

Keywords

Comments

Numbers k such that k and k+1 are both terms of A360906.

Examples

			48 is a term since A073184(916352) = A190867(916352) = 6 and A073184(916353) = A190867(916353) = 6.
		

Crossrefs

Subsequence of A360906.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Times @@ (Min[#, 3] & /@ (e + 1)) == Times @@ (Max[#, 1] & /@ (e - 1))]; q[1] = True; seq[kmax_] := Module[{s = {}, k = 1, q1 = q[1], q2}, Do[q2 = q[k]; If[q1 && q2, AppendTo[s, k-1]]; q1 = q2, {k, 2, kmax}]; s]; seq[2*10^5]
  • PARI
    is(k) = {my(e = factor(k)[,2]); prod(i = 1, #e, min(e[i] + 1, 3)) == prod(i = 1, #e, max(e[i] - 1, 1)); }
    lista(kmax) = {my(is1 = is(1), i2); for(k=2, kmax, is2 = is(k); if(is1 && is2, print1(k-1, ", ")); is1 = is2); }