A360932 Primes of the form H(m,k) = F(k+1)*F(m-k+2) - F(k)*F(m-k+1), where F(m) is the m-th Fibonacci number and m >= 0, 0 <= k <= m.
2, 3, 5, 7, 11, 13, 23, 29, 37, 41, 47, 89, 97, 103, 107, 157, 167, 173, 199, 233, 443, 521, 733, 1597, 1741, 1867, 1871, 1877, 2207, 3037, 3571, 7841, 7919, 7951, 9349, 11933, 12823, 28657, 33503, 50549, 54277, 54287, 54293, 54319, 54497, 55717, 142099
Offset: 1
Keywords
Examples
29 is a term because it is prime and A108038(8,2) = H(8,2) = 29. Also A108038(8,7) = H(8,7) = 29.
Links
- Robert Israel, Table of n, a(n) for n = 1..9313
- Hsin-Yun Ching, Rigoberto Florez, F. Luca, Antara Mukherjee, and J. C. Saunders, Primes and composites in the determinant Hosoya triangle, Fibonacci Quarterly, 2023.
Programs
-
Maple
Res:= {}: M:= 50: # for terms <= F(M) fmax:= combinat:-fibonacci(M): T[1]:= [1,1]: T[2]:= [1,3,1]: for i from 3 to M do t1:= [op(T[i-1][1..i-1] + T[i-2][1..i-1]),T[i-1][i],0]; t2:= ListTools:-Reverse(t1); T[i]:= zip(max,t1,t2); Res:= Res union convert(select(t -> t <= fmax and isprime(t), T[i][1..ceil((i+1)/2)]),set) od: sort(convert(Res,list)); # Robert Israel, Mar 14 2024
-
Mathematica
H[r_, k_] := Det[{{Fibonacci[r-k+2], Fibonacci[r-k+1]}, {Fibonacci[k], Fibonacci[k+1]}}]; DeterminantPrimes[t_, m_] := Table[If[PrimeQ[H[r,k]],H[r,k], Unevaluated[Sequence[]]], {r,t,m}, {k,1,Ceiling[r/2]}]; ListOfPrimes[t_,m_]:= Sort[DeleteDuplicates[Flatten[DeterminantPrimes[t, m]]]]; ListOfPrimes[2, 100] Select[Union[Flatten[Table[Fibonacci[k+1]Fibonacci[m-k+2]-Fibonacci[k]Fibonacci[m-k+1],{m,0,40},{k,0,m}]]],PrimeQ] (* Harvey P. Dale, Aug 14 2025 *)
Comments