cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360937 Triangle read by rows: T(n, k) is the k-th Lie-Betti number of a wheel graph on n vertices, for n >= 3 and k >= 0.

Original entry on oeis.org

1, 3, 8, 12, 8, 3, 1, 1, 4, 20, 56, 84, 90, 84, 56, 20, 4, 1, 1, 5, 32, 108, 212, 371, 547, 547, 371, 212, 108, 32, 5, 1, 1, 6, 45, 171, 442, 1081, 2025, 2616, 2722, 2616, 2025, 1081, 442, 171, 45, 6, 1, 1, 7, 60, 258, 842, 2489, 5440, 8855, 12955, 16785, 16785, 12955, 8855, 5440, 2489, 842, 258, 60, 7, 1
Offset: 3

Views

Author

Samuel J. Bevins, Feb 26 2023

Keywords

Examples

			Triangle T(n, k) begins:
   k=0 1  2   3  4     5    6    7    8    9   10   11  12  13 14 15 16
n=3: 1 3  8  12  8     3    1
n=4: 1 4 20  56  84   90   84   56   20    4    1
n=5: 1 5 32 108 212  371  547  547  371  212  108   32   5   1
n=6: 1 6 45 171 442 1081 2025 2616 2722 2616 2025 1081 442 171 45  6  1
...
		

Crossrefs

Cf. A360571 (path graph), A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360936 (ladder graph), A361044 (friendship graph).

Programs

  • SageMath
    # uses[betti_numbers, LieAlgebraFromGraph from A360571]
    def A360937_row(n):
        return betti_numbers(LieAlgebraFromGraph(graphs.WheelGraph(n)))
    for n in range(3, 7): print(A360937_row(n))