A368135 Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the Fibonacci trees of order n >= 2.
1, 2, 2, 1, 1, 4, 11, 16, 16, 11, 4, 1, 1, 7, 33, 95, 212, 344, 444, 444, 344, 212, 95, 33, 7, 1, 1, 12, 90, 454, 1780, 5489, 14036, 29804, 54007, 83404, 111361, 128378, 128378, 111361, 83404, 54007, 29804, 14036, 5489, 1780, 454, 90, 12, 1
Offset: 2
Examples
Triangle begins: k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n=2: 1 2 2 1 n=3: 1 4 11 16 16 11 4 1 n=4: 1 7 33 95 212 344 444 444 344 212 95 33 7 1 n=5: 1 12 90 454 1780 5489 14036 29804 54007 83404 111361 128378 128378 111361 83404 54007 ...
Links
- Marco Aldi and Samuel Bevins, 2-step Nilpotent L_oo-algebras and Hypergraphs, arXiv:2212.13608 [math.CO], 2023. See page 9.
- Meera Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
- SageMath Graph Theory, Various families of graphs, see FibonacciTree().
Crossrefs
Programs
-
SageMath
from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras def BettiNumbers(graph): D = {} for edge in graph.edges(): e = "x" + str(edge[0]) f = "x" + str(edge[1]) D[(e, f)] = {e + f : 1} C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional(). Stratified().Nilpotent()) L = LieAlgebra(QQ, D, nilpotent=True, category=C) H = L.cohomology() d = L.dimension() + 1 return [H[n].dimension() for n in range(d)] # Example usage: n = 5 X = BettiNumbers(graphs.FibonacciTree(n))
Comments