cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Samuel J. Bevins

Samuel J. Bevins's wiki page.

Samuel J. Bevins has authored 12 sequences. Here are the ten most recent ones:

A368135 Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the Fibonacci trees of order n >= 2.

Original entry on oeis.org

1, 2, 2, 1, 1, 4, 11, 16, 16, 11, 4, 1, 1, 7, 33, 95, 212, 344, 444, 444, 344, 212, 95, 33, 7, 1, 1, 12, 90, 454, 1780, 5489, 14036, 29804, 54007, 83404, 111361, 128378, 128378, 111361, 83404, 54007, 29804, 14036, 5489, 1780, 454, 90, 12, 1
Offset: 2

Author

Samuel J. Bevins, Jan 11 2024

Keywords

Examples

			Triangle begins:
  k=0 1  2  3   4   5    6    7    8    9    10    11   12    13   14   15
n=2: 1 2   2  1
n=3: 1 4  11  16   16   11     4     1
n=4: 1 7  33  95  212  344   444   444   344   212     95     33      7      1
n=5: 1 12 90 454 1780 5489 14036 29804 54007 83404 111361 128378 128378 111361 83404 54007 ...
		

Crossrefs

Cf. A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360938 (ladder graph), A360937 (wheel graph).

Programs

  • SageMath
    from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras
    def BettiNumbers(graph):
        D = {}
        for edge in graph.edges():
            e = "x" + str(edge[0])
            f = "x" + str(edge[1])
            D[(e, f)] = {e + f : 1}
        C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional().
             Stratified().Nilpotent())
        L = LieAlgebra(QQ, D, nilpotent=True, category=C)
        H = L.cohomology()
        d = L.dimension() + 1
        return [H[n].dimension() for n in range(d)]
    # Example usage:
    n = 5
    X = BettiNumbers(graphs.FibonacciTree(n))

A364579 Fifth Lie-Betti number of a path graph on n vertices.

Original entry on oeis.org

0, 0, 1, 11, 48, 140, 329, 668, 1223, 2074, 3316, 5060, 7434, 10584, 14675, 19892, 26441, 34550, 44470, 56476, 70868, 87972, 108141, 131756, 159227, 190994, 227528, 269332, 316942, 370928, 431895, 500484, 577373, 663278, 758954
Offset: 1

Author

Samuel J. Bevins, Aug 14 2023

Keywords

Comments

Sequence T(n,5) in A360571.

Crossrefs

Cf. A360571 (path graph triangle), A088459 (second Lie-Betti number of path graphs), A361230, A362007.

Programs

  • Python
    def A364579_up_to(n):
        values = [0, 0, 1, 11]
        for i in range(5, n+1):
            result = (i**5 + 30*i**4 - 145*i**3 - 270*i**2 + 2424*i - 3360)/120
            values.append(int(result))
        return values

Formula

a(1) = a(2) = 0, a(3) = 1, a(4) = 11, a(n) = (n^5 + 30*n^4 - 145*n^3 - 270*n^2 + 2424*n - 3360)/120 for n >= 5.

A364946 Sixth Lie-Betti number of a path graph on n vertices.

Original entry on oeis.org

0, 0, 0, 4, 33, 140, 424, 1039, 2213, 4262, 7606, 12786, 20482, 31532, 46952, 67957, 95983, 132710, 180086, 240352, 316068, 410140, 525848, 666875, 837337, 1041814, 1285382, 1573646, 1912774, 2309532, 2771320, 3306209, 3922979, 4631158, 5441062
Offset: 1

Author

Samuel J. Bevins, Aug 14 2023

Keywords

Comments

Sequence T(n,6) in A360571.

Crossrefs

Cf. A360571 (path graph triangle), A088459 (second Lie-Betti number of path graphs), A361230, A362007, A364579.

Programs

  • Mathematica
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 4, 33, 140, 424, 1039, 2213, 4262, 7606, 12786}, 50] (* Paolo Xausa, May 28 2024 *)
  • Python
    def A364946_up_to(n):
        values = [0, 0, 0, 4,33]
        for i in range(6, n+1):
            result = (i**6 + 45*i**5 - 125*i**4 - 2865*i**3 + 23524*i**2 - 76740*i + 98640)/720
            values.append(int(result))
        return values

Formula

a(1) = a(2) = a(3) = 0, a(4) = 4, a(5) = 33, a(n) = (n^6 + 45*n^5 - 125*n^4 - 2865*n^3 + 23524*n^2 - 76740*n + 98640)/720 for n >= 6.
G.f.: x^4*(4 + 5*x - 7*x^2 - 3*x^3 - 4*x^4 + 15*x^5 - 15*x^6 + 7*x^7 - x^8)/(1 - x)^7. - Stefano Spezia, Aug 29 2023

A363378 Third Lie-Betti number of a cycle graph on n vertices.

Original entry on oeis.org

12, 25, 41, 68, 105, 152, 210, 280, 363, 460, 572, 700, 845, 1008, 1190, 1392, 1615, 1860, 2128, 2420, 2737, 3080, 3450, 3848, 4275, 4732, 5220, 5740, 6293, 6880, 7502, 8160, 8855, 9588, 10360, 11172, 12025, 12920, 13858
Offset: 3

Author

Samuel J. Bevins, Jun 01 2023

Keywords

Comments

Sequence T(n,3) in A360572.

Crossrefs

Cf. A005581, A054000, A028347, A000027, A360572 (cycle graph triangle)

Programs

  • Python
    def A363378(n):
        values = [12,25,41]
        for i in range(6, n+1):
            result = (i*(i+11)*(i-2))/6
            values.append(result)
        return values

Formula

a(3) = 12, a(4) = 25, a(5) = 41, a(n) = n*(n+11)*(n-2)/6 for n >= 6.
a(n) = A005581(n-4) + A054000(n-1) + A028347(n-2) + A000027(n) for n >= 6.
a(n) = A106058(n+1) - 2 for n >= 6. - Hugo Pfoertner, Jun 02 2023

A362007 Fourth Lie-Betti number of a path graph on n vertices.

Original entry on oeis.org

0, 0, 3, 16, 48, 107, 203, 347, 551, 828, 1192, 1658, 2242, 2961, 3833, 4877, 6113, 7562, 9246, 11188, 13412, 15943, 18807, 22031, 25643, 29672, 34148, 39102, 44566, 50573, 57157, 64353, 72197, 80726, 89978, 99992, 110808
Offset: 1

Author

Samuel J. Bevins, Apr 05 2023

Keywords

Comments

Sequence T(n,4) in A360571.

Crossrefs

Cf. A360571 (path graph triangle), A088459 (second Lie-Betti number of path graphs), A361230.

Programs

  • Python
    def A362007(n):
        values = [0,0,3]
        for i in range(4, n+1):
            result = (i**4 + 18*i**3 - 97*i**2 + 174*i - 168)/24
            values.append(int(result))
        return values

Formula

a(1) = a(2) = 0, a(3) = 3, a(n) = (n^4 + 18*n^3 - 97*n^2 + 174*n - 168)/24 for n >= 4.
a(n) = A011379(n-3) + A006002(n-4) + A001105(n-3) + A056106(n-2) + A000027(n-3) + A000332(n-3) + A000217(n-5) + A000027(n-4) for n >= 5.
From Stefano Spezia, Mar 02 2025: (Start)
G.f.: x^2*(3 + x - 2*x^2 - 3*x^3 + 3*x^4 - x^5)/(1 - x)^5.
E.g.f.: (12*(6 + 4*x + x^2) - exp(x)*(72 - 24*x - 36*x^2 - 28*x^3 - x^4))/24. (End)

Extensions

a(34) and Python program corrected by Robert C. Lyons, Apr 17 2023

A361230 Third Lie-Betti number of a path graph on n vertices.

Original entry on oeis.org

0, 1, 6, 16, 33, 58, 92, 136, 191, 258, 338, 432, 541, 666, 808, 968, 1147, 1346, 1566, 1808, 2073, 2362, 2676, 3016, 3383, 3778, 4202, 4656, 5141, 5658, 6208, 6792, 7411, 8066, 8758, 9488, 10257, 11066, 11916, 12808, 13743, 14722, 15746, 16816, 17933
Offset: 1

Author

Samuel J. Bevins, Mar 05 2023

Keywords

Comments

Sequence T(n,3) in A360571.

Crossrefs

Cf. A360571 (path graph triangle).

Programs

  • Maple
    gf := (x^2*(-x^4 + x^3 - 2*x^2 + 2*x + 1))/(x - 1)^4:
    ser := series(gf, x, 50): seq(coeff(ser, x, n), n = 1..48); # Peter Luschny, Mar 06 2023
  • Python
    def A361230(n):
        values = [0,1]
        for i in range(3, n+1):
            result = (i^3 + 9*i^2 - 40*i + 48)/6
            values.append(result)
        return values

Formula

a(1) = 0, a(2) = 1, a(n) = (n^3 + 9*n^2 - 40*n + 48)/6 for n >= 3.
a(n) = [x^n] (x^2*(-x^4 + x^3 - 2*x^2 + 2*x + 1))/(x - 1)^4. - Peter Luschny, Mar 06 2023
E.g.f.: exp(x)*(8 - 5*x + 2*x^2 + x^3/6) - 8 - 3*x - x^2/2. - Stefano Spezia, Mar 02 2025

A360937 Triangle read by rows: T(n, k) is the k-th Lie-Betti number of a wheel graph on n vertices, for n >= 3 and k >= 0.

Original entry on oeis.org

1, 3, 8, 12, 8, 3, 1, 1, 4, 20, 56, 84, 90, 84, 56, 20, 4, 1, 1, 5, 32, 108, 212, 371, 547, 547, 371, 212, 108, 32, 5, 1, 1, 6, 45, 171, 442, 1081, 2025, 2616, 2722, 2616, 2025, 1081, 442, 171, 45, 6, 1, 1, 7, 60, 258, 842, 2489, 5440, 8855, 12955, 16785, 16785, 12955, 8855, 5440, 2489, 842, 258, 60, 7, 1
Offset: 3

Author

Samuel J. Bevins, Feb 26 2023

Keywords

Examples

			Triangle T(n, k) begins:
   k=0 1  2   3  4     5    6    7    8    9   10   11  12  13 14 15 16
n=3: 1 3  8  12  8     3    1
n=4: 1 4 20  56  84   90   84   56   20    4    1
n=5: 1 5 32 108 212  371  547  547  371  212  108   32   5   1
n=6: 1 6 45 171 442 1081 2025 2616 2722 2616 2025 1081 442 171 45  6  1
...
		

Crossrefs

Cf. A360571 (path graph), A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360936 (ladder graph), A361044 (friendship graph).

Programs

  • SageMath
    # uses[betti_numbers, LieAlgebraFromGraph from A360571]
    def A360937_row(n):
        return betti_numbers(LieAlgebraFromGraph(graphs.WheelGraph(n)))
    for n in range(3, 7): print(A360937_row(n))

A361014 Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the hypercube graph on 2^(n-1) vertices, n >= 1, k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 4, 14, 25, 28, 25, 14, 4, 1, 1, 8, 64, 258, 986, 2870, 6134, 11586, 18830, 23832, 25078, 23832, 18830, 11586, 6134, 2870, 986, 258, 64, 8, 1
Offset: 1

Author

Samuel J. Bevins, Feb 28 2023

Keywords

Examples

			Triangle begins:
   k=0 1  2   3   4    5    6     7     8     9    10    11    12    13   14
n=1: 1 1
n=2: 1 2  2   1
n=3: 1 4 14  25  28   25   14     4     1
n=4: 1 8 64 258 986 2870 6134 11586 18830 23832 25078 23832 18830 11586 6134
...
		

Crossrefs

Cf. A360571 (path graph), A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360936 (ladder graph), A360937 (wheel graph).

Programs

  • SageMath
    # uses[betti_numbers, LieAlgebraFromGraph from A360571]
    def A360936_row(n):
        if n == 1: return [1, 1]
        return betti_numbers(LieAlgebraFromGraph(graphs.CubeGraph(n-1)))

A360936 Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the ladder graph on 2*n vertices, n >= 2, k >= 0.

Original entry on oeis.org

1, 2, 2, 1, 1, 4, 14, 25, 28, 25, 14, 4, 1, 1, 6, 32, 89, 204, 357, 437, 437, 357, 204, 89, 32, 6, 1, 1, 8, 54, 207, 680, 1650, 3201, 5310, 6993, 7508, 6993, 5310, 3201, 1650, 680, 207, 54, 8, 1
Offset: 1

Author

Samuel J. Bevins, Feb 26 2023

Keywords

Examples

			Triangle begins:
   k=0 1  2   3   4    5    6    7    8    9   10   11   12   13  14  15 16
n=1: 1 2  2   1
n=2: 1 4 14  25  28   25   14    4    1
n=3: 1 6 32  89 204  357  437  437  357  204   89   32    6    1
n=4: 1 8 54 207 680 1650 3201 5310 6993 7508 6993 5310 3201 1650 680 207 54
...
		

Crossrefs

Cf. A360571 (path graph), A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360937 (wheel graph)

Programs

  • SageMath
    # uses[betti_numbers, LieAlgebraFromGraph from A360571]
    def A360936(n):
        return betti_numbers(LieAlgebraFromGraph(graphs.LadderGraph(n)))

A360625 Triangle read by rows: T(n,k) is the k-th Lie-Betti number of a complete graph on n vertices, n >= 1, k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 3, 8, 12, 8, 3, 1, 1, 4, 20, 56, 84, 90, 84, 56, 20, 4, 1, 1, 5, 40, 176, 440, 835, 1423, 1980, 1980, 1423, 835, 440, 176, 40, 5, 1, 1, 6, 70, 441, 1616, 4600, 11984, 26824, 46800, 63254, 70784, 70784, 63254, 46800, 26824, 11984, 4600, 1616, 441, 70, 6, 1
Offset: 1

Author

Samuel J. Bevins, Feb 14 2023

Keywords

Examples

			Triangle begins:
  k= 0 1  2   3   4   5    6    7    8    9  10  11  12 13 14 15
n=1: 1 1
n=2: 1 2  2   1
n=3: 1 3  8  12   8   3    1
n=4: 1 4 20  56  84  90   84   56   20    4   1
n=5: 1 5 40 176 440 835 1423 1980 1980 1423 835 440 176 40  5  1
...
		

Crossrefs

Programs

  • SageMath
    # uses[betti_numbers, LieAlgebraFromGraph from A360571]
    def A360625_row(n):
        if n == 1: return [1,1]
        return betti_numbers(LieAlgebraFromGraph(graphs.CompleteGraph(n)))