A360944 Numbers m such that phi(m) is a triangular number, where phi is the Euler totient function (A000010).
1, 2, 7, 9, 11, 14, 18, 22, 29, 37, 57, 58, 63, 67, 74, 76, 79, 108, 114, 126, 134, 137, 143, 155, 158, 175, 183, 191, 211, 225, 231, 244, 248, 274, 277, 286, 308, 310, 329, 341, 350, 366, 372, 379, 382, 396, 417, 422, 423, 450, 453, 462, 554, 556, 604, 623, 631, 658, 682
Offset: 1
Keywords
Examples
phi(57) = 36 = 8*9/2, a triangular number; so 57 is a term of the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter := m -> issqr(1 + 8*numtheory:-phi(m)) : select(filter, [$(1 .. 700)]);
-
Mathematica
Select[Range[700], IntegerQ[Sqrt[8 * EulerPhi[#] + 1]] &] (* Amiram Eldar, Feb 27 2023 *)
-
PARI
isok(m) = ispolygonal(eulerphi(m), 3); \\ Michel Marcus, Feb 27 2023
-
Python
from itertools import islice, count from sympy.ntheory.primetest import is_square from sympy import totient def A360944_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:is_square((totient(n)<<3)+1), count(max(1,startvalue))) A360944_list = list(islice(A360944_gen(),20)) # Chai Wah Wu, Feb 28 2023
Comments