cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360944 Numbers m such that phi(m) is a triangular number, where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 7, 9, 11, 14, 18, 22, 29, 37, 57, 58, 63, 67, 74, 76, 79, 108, 114, 126, 134, 137, 143, 155, 158, 175, 183, 191, 211, 225, 231, 244, 248, 274, 277, 286, 308, 310, 329, 341, 350, 366, 372, 379, 382, 396, 417, 422, 423, 450, 453, 462, 554, 556, 604, 623, 631, 658, 682
Offset: 1

Views

Author

Bernard Schott, Feb 26 2023

Keywords

Comments

Subsequence of primes is A055469 because in this case phi(k(k+1)/2+1) = k(k+1)/2.
Subsequence of triangular numbers is A287472.

Examples

			phi(57) = 36 = 8*9/2, a triangular number; so 57 is a term of the sequence.
		

Crossrefs

Similar, but with phi(m) is: A039770 (square), A078164 (biquadrate), A096503 (repdigit), A117296 (palindrome), A236386 (oblong).

Programs

  • Maple
    filter := m ->  issqr(1 + 8*numtheory:-phi(m)) : select(filter, [$(1 .. 700)]);
  • Mathematica
    Select[Range[700], IntegerQ[Sqrt[8 * EulerPhi[#] + 1]] &] (* Amiram Eldar, Feb 27 2023 *)
  • PARI
    isok(m) = ispolygonal(eulerphi(m), 3); \\ Michel Marcus, Feb 27 2023
    
  • Python
    from itertools import islice, count
    from sympy.ntheory.primetest import is_square
    from sympy import totient
    def A360944_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:is_square((totient(n)<<3)+1), count(max(1,startvalue)))
    A360944_list = list(islice(A360944_gen(),20)) # Chai Wah Wu, Feb 28 2023