A360954 Number of finite sets of positive integers whose right half (exclusive) sums to n.
1, 0, 1, 3, 6, 10, 15, 22, 29, 41, 50, 70, 81, 113, 126, 176, 191, 264, 286, 389, 413, 569, 595, 798, 861, 1121, 1187, 1585, 1653, 2132, 2334, 2906, 3111, 4006, 4234, 5252, 5818, 6995, 7620, 9453, 10102, 12165, 13663, 15940, 17498, 21127, 22961, 26881, 30222, 34678, 38569
Offset: 0
Keywords
Examples
The a(2) = 1 through a(7) = 22 sets: {1,2} {1,3} {1,4} {1,5} {1,6} {1,7} {2,3} {2,4} {2,5} {2,6} {2,7} {1,2,3} {3,4} {3,5} {3,6} {3,7} {1,2,4} {4,5} {4,6} {4,7} {1,3,4} {1,2,5} {5,6} {5,7} {2,3,4} {1,3,5} {1,2,6} {6,7} {1,4,5} {1,3,6} {1,2,7} {2,3,5} {1,4,6} {1,3,7} {2,4,5} {1,5,6} {1,4,7} {3,4,5} {2,3,6} {1,5,7} {2,4,6} {1,6,7} {2,5,6} {2,3,7} {3,4,6} {2,4,7} {3,5,6} {2,5,7} {4,5,6} {2,6,7} {3,4,7} {3,5,7} {3,6,7} {4,5,7} {4,6,7} {5,6,7} {1,2,3,4} For example, the set y = {1,2,3,4} has right half (exclusive) {3,4}, with sum 7, so y is counted under a(7).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
The inclusive version is A360955.
First for prime indices, second for partitions, third for prime factors:
Programs
-
Mathematica
Table[Length[Select[Join@@IntegerPartitions/@Range[0,3*k],UnsameQ@@#&&Total[Take[#,Floor[Length[#]/2]]]==k&]],{k,0,15}]
-
PARI
\\ P(n,k) is A072233(n,k). P(n,k)=polcoef(1/prod(k=1, k, 1 - x^k + O(x*x^n)), n) a(n)=if(n==0, 1, sum(w=1, sqrt(n), my(t=binomial(w,2)); sum(h=w+1, (n-t)\w, binomial(h, w+1) * P(n-w*h-t, w-1)))) \\ Andrew Howroyd, Mar 13 2023
Formula
a(n) = Sum_{w>=1} Sum_{h=w+1..floor((n-binomial(w,2))/w)} binomial(h,w+1) * A072233(n - w*h - binomial(w,2), w-1) for n > 0. - Andrew Howroyd, Mar 13 2023
Extensions
Terms a(16) and beyond from Andrew Howroyd, Mar 13 2023