A360956 Number of finite even-length multisets of positive integers whose right half sums to n.
1, 1, 3, 5, 10, 13, 26, 31, 55, 73, 112, 140, 233, 276, 405, 539, 750, 931, 1327, 1627, 2259, 2839, 3708, 4624, 6237, 7636, 9823, 12275, 15715, 19227, 24735, 30000, 37930, 46339, 57574, 70374, 87704, 105606, 129998, 157417, 193240, 231769, 283585, 339052, 411682, 493260
Offset: 0
Keywords
Examples
The a(1) = 1 through a(5) = 13 multisets: {1,1} {1,2} {1,3} {1,4} {1,5} {2,2} {2,3} {2,4} {2,5} {1,1,1,1} {3,3} {3,4} {3,5} {1,1,1,2} {4,4} {4,5} {1,1,1,1,1,1} {1,1,1,3} {5,5} {1,1,2,2} {1,1,1,4} {1,2,2,2} {1,1,2,3} {2,2,2,2} {1,2,2,3} {1,1,1,1,1,2} {2,2,2,3} {1,1,1,1,1,1,1,1} {1,1,1,1,1,3} {1,1,1,1,2,2} {1,1,1,1,1,1,1,2} {1,1,1,1,1,1,1,1,1,1} For example, the multiset y = {1,2,2,3} has right half {2,3}, with sum 5, so y is counted under a(5).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
First for prime indices, second for partitions, third for prime factors:
Programs
-
Mathematica
Table[Length[Select[Join@@IntegerPartitions/@Range[0,3*k], EvenQ[Length[#]]&&Total[Take[#,Length[#]/2]]==k&]],{k,0,15}]
-
PARI
seq(n)={my(s=1 + O(x*x^n), p=s); for(k=1, n, s += p*x^k/(1-x^k + O(x*x^(n-k)))^(k+1); p /= 1 - x^k); Vec(s)} \\ Andrew Howroyd, Mar 11 2023
Formula
G.f.: 1 + Sum_{k>=1} x^k/((1 - x^k)^(k+1) * Product_{j=1..k-1} (1-x^j)). - Andrew Howroyd, Mar 11 2023
Extensions
Terms a(16) and beyond from Andrew Howroyd, Mar 11 2023