cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360969 Multiplicative with a(p^e) = e^2, p prime and e > 0.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 9, 4, 1, 1, 4, 1, 1, 1, 16, 1, 4, 1, 4, 1, 1, 1, 9, 4, 1, 9, 4, 1, 1, 1, 25, 1, 1, 1, 16, 1, 1, 1, 9, 1, 1, 1, 4, 4, 1, 1, 16, 4, 4, 1, 4, 1, 9, 1, 9, 1, 1, 1, 4, 1, 1, 4, 36, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 4, 4, 1, 1, 1, 16, 16, 1, 1, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 27 2023

Keywords

Comments

From Bernard Schott, Feb 27 2023: (Start)
The three fixed points are 1, 4 and 16.
a(n) = 1 iff n is A005117.
a(n) = 4 iff n is in A060687. (End)

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
      mul(t^2, t = ifactors(n)[2][..,2]);
    end proc:
    map(f, [$1..100]); # Robert Israel, Mar 29 2023
  • Mathematica
    g[p_, e_] := e^2; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + 4*X^2 - X^3)/(1-X)^3)[n], ", "))
    
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1]=f[k,2]^2; f[k, 2]=1); factorback(f); \\ Michel Marcus, Feb 27 2023

Formula

Dirichlet g.f.: zeta(s) * Product_{primes p} (1 + (3*p^s - 1) / (p^s*(p^s - 1)^2)).
Sum_{k=1..n} a(k) ~ c*n, where c = Product_{primes p} (1 + (3*p - 1) / (p*(p-1)^2)) = 8.18840474382698544967326709964388539461401085196013492328186138...
a(n) = A005361(n)^2.