cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A360538 Number of multisets of n nonzero digits such that sum(digits) > product(digits).

Original entry on oeis.org

0, 0, 9, 10, 11, 12, 15, 16, 18, 20, 22, 23, 25, 26, 29, 30, 31, 32, 35, 36, 38, 39, 41, 42, 44, 44, 47, 50, 51, 52, 54, 55, 56, 57, 60, 60, 60, 61, 63, 64, 65, 67, 70, 71, 73, 73, 74, 75, 77, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 95, 96, 97, 98, 101, 101
Offset: 0

Views

Author

Charles Bershatsky, Feb 10 2023

Keywords

Comments

Note that this does not represent the number of n-digit numbers that satisfy this property; that would require the computation of the permutations of each multiset.

Examples

			For n = 2, the a(2) = 9 solutions are [11,12,13,14,15,16,17,18,19].
For n = 3, the a(3) = 10 solutions are [111,112,113,114,115,116,117,118,119,122].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, s, p) option remember; `if`(s+n*i<=p, 0,
         `if`(n=0, 1, add(b(n-1, j, s+j, p*j), j=1..i)))
        end:
    a:= n-> b(n, 9, 0, 1):
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 11 2023

A360563 Number of ordered multisets of size n with elements from [n] whose element sum is larger than the product of all elements.

Original entry on oeis.org

0, 0, 3, 10, 31, 71, 171, 288, 505, 985, 1471, 2036, 3455, 5136, 8009, 11376, 14261, 17613, 24073, 34429, 60706, 76196, 92324, 108538, 144947, 167151, 201501, 309115, 452026, 543635, 649137, 928947, 1059705, 1250129, 1634194, 1838908, 2084398, 2331001, 2628518
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2023

Keywords

Examples

			a(2) = 3: [1,1], [1,2], [2,1].
a(3) = 10: [1,1,1], [1,1,2], [1,1,3], [1,2,1], [1,2,2], [1,3,1], [2,1,1], [2,1,2], [2,2,1], [3,1,1].
a(4) = 31: [1,1,1,1], [1,1,1,2], [1,1,1,3], [1,1,1,4], [1,1,2,1], [1,1,2,2], [1,1,2,3], [1,1,3,1], [1,1,3,2], [1,1,4,1], [1,2,1,1], [1,2,1,2], [1,2,1,3], [1,2,2,1], [1,2,3,1], [1,3,1,1], [1,3,1,2], [1,3,2,1], [1,4,1,1], [2,1,1,1], [2,1,1,2], [2,1,1,3], [2,1,2,1], [2,1,3,1], [2,2,1,1], [2,3,1,1], [3,1,1,1], [3,1,1,2], [3,1,2,1], [3,2,1,1], [4,1,1,1].
		

Crossrefs

Cf. A360971.

Programs

  • Maple
    b:= proc(n, i, s, p) option remember;
          `if`(s+n*i<=p, 0, `if`(n=0 or i=1, 1/n!,
           add(b(n-j, i-1, s+i*j, p*i^j)/j!, j=0..n)))
        end:
    a:= n-> b(n$2, 0, 1)*n!:
    seq(a(n), n=0..44);
Showing 1-2 of 2 results.