cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361012 Multiplicative with a(p^e) = sigma(e), where sigma = A000203.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 3, 1, 1, 1, 4, 3, 1, 4, 3, 1, 1, 1, 6, 1, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 7, 3, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 12, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 3, 3, 1, 1, 1, 7, 7, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := DivisorSigma[1, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(sigma, factor(n)[, 2])); \\ Amiram Eldar, Jan 07 2025
  • Python
    from math import prod
    from sympy import divisor_sigma, factorint
    def A361012(n): return prod(divisor_sigma(e) for e in factorint(n).values()) # Chai Wah Wu, Feb 28 2023
    

Formula

Dirichlet g.f.: Product_{p prime} (1 + Sum_{e>=1} sigma(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma(e) - sigma(e-1)) / p^e) = 2.96008030202494141048182047811089469392843909592516341... = A361013