A361012 Multiplicative with a(p^e) = sigma(e), where sigma = A000203.
1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 3, 1, 1, 1, 4, 3, 1, 4, 3, 1, 1, 1, 6, 1, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 7, 3, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 12, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 3, 3, 1, 1, 1, 7, 7, 1, 1, 3, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
g[p_, e_] := DivisorSigma[1, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = vecprod(apply(sigma, factor(n)[, 2])); \\ Amiram Eldar, Jan 07 2025
-
Python
from math import prod from sympy import divisor_sigma, factorint def A361012(n): return prod(divisor_sigma(e) for e in factorint(n).values()) # Chai Wah Wu, Feb 28 2023
Formula
Dirichlet g.f.: Product_{p prime} (1 + Sum_{e>=1} sigma(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma(e) - sigma(e-1)) / p^e) = 2.96008030202494141048182047811089469392843909592516341... = A361013