A361015 Number of arithmetic progressions of 3 or more integers whose product is equal to n.
0, 2, 0, 0, 2, 0, 3, 2, 2, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 2, 0, 0, 10, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 4, 0, 2, 0, 0, 4, 0, 0, 6, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 5, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 6, 4, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20
Offset: 2
Keywords
Examples
a(3) = 2 as we have solutions (x=-3,y=2,z=2; -3 * -1 * 1) and (x=1,y=-2,z=2; 1 * -1 * -3). a(8) = 3 as we have solutions (x=-4,y=3,z=2; -4 * -1 * 2), (x=2,y=-3,z=2; 2 * -1 * -4), and (x=2,y=0,z=2; 2*2*2). a(27) = 1 as we have a unique solution (x=3,y=0,z=2; 3*3*3). a(32) = 1 as we have a unique solution (x=2,y=0,z=4; 2*2*2*2*2). a(64) = 5 as we have solutions (x=-8,y=6,z=2; -8 * -2 * 4), (x=-2,y=0,z=5; (-2)^6), (x=2,y=0,z=5; 2^6), (x=4,y=-6,z=2; 4 * -2 * -8), and (x=4,y=0,z=2; 4*4*4). a(81) = 4 as we have solutions (x=-9,y=6,z=2; -9 * -3 * 3), (x=-3,y=0,z=3; -3 * -3 * -3 * -3), (x=3,y=-6,z=2; 3 * -3 * -9), and (x=3,y=0,z=3; 3*3*3*3). a(300) = 2 as we have solutions (x=-25,y=13,z=2; -25 * -12 * 1) and (x=1,y=-13,z=2; 1 * -12 * -25).
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..10000
Programs
-
PARI
A361015(n) = sum(x=-n,n,sum(y=-n,n,sum(z=2,n,n==prod(k=0,z,x+(y*k))))); \\ (Slow!)
-
Python
from sympy import divisors def A361015(n): ds = divisors(n) c, s = -len(ds)<<1, [-d for d in ds[::-1]]+ds for x in s: d2 = [d//x for d in ds if d%x==0] for y in (f-x for f in [-d for d in d2[::-1]]+d2): m, k = x*(z:=x+y), 1 while n >= abs(m) and k<=n: if n == m: c += 1 z += y m *= z k += 1 return c # Chai Wah Wu, May 11 2023
Comments