A361035 a(n) = 9979200 * (4*n)!/(n!*(n+3)!^3).
46200, 17325, 116424, 2134440, 67953600, 3086579925, 179961581800, 12633303042360, 1023952465972800, 93080123469333000, 9292590788015304000, 1003030870975774344000, 115656146295979953692160, 14112534648127632044761125, 1808633485822731984665865000
Offset: 0
Programs
-
Maple
seq( 9979200 * (4*n)!/(n!*(n+3)!^3 ), n = 0..20);
Formula
a(n) = 9979200 * A008977(n)/((n+1)*(n+2)*(n+3))^3.
a(n) = (15925)*A008977(n+3)/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)*(4*n+9)*(4*n+10)*(4*n+11)).
P-recursive: a(n) = 4*(4*n-1)*(4*n-2)*(4*n-3)/(n+3)^3 * a(n-1) with a(0) = 46200.
The o.g.f. A(x) satisfies the differential equation
x^3*(1 - 256*x)*A(x)''' + x^2*(12 - 1152*x)*A(x)'' + x*(37 - 816*x)*A(x)' + (27 - 24*x)*A(x) - 1247400 = 0 with A(0) = 46200, A'(0) = 17325 and A''(0) = 232848.
a(n) ~ 2494800*sqrt(8/Pi^3) * 2^(8*n)/n^(21/2).
Comments