A361040 a(n) = 420*(3*n)!/(n!*(2*n + 3)!).
70, 21, 30, 70, 210, 735, 2856, 11970, 53130, 246675, 1187550, 5890248, 29954680, 155602020, 823184880, 4424618730, 24116031162, 133072694475, 742405558650, 4182821562150, 23776769743650, 136248095712855, 786482994679200
Offset: 0
Links
- Ira M. Gessel, Super ballot numbers, J. Symbolic Comp., 14 (1992), 179-194.
Programs
-
Maple
seq( 420*(3*n)!/(n!*(2*n + 3)!), n = 0..20)
Formula
a(n) = 70*binomial(3*n,2*n) - 189*binomial(3*n,2*n+1) + 114*binomial(3*n,2*n+2) -32*binomial(3*n,2*n+3). Thus a(n) is an integer.
P-recursive: 2*(n + 1)*(2*n + 3)*a(n) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 70.
a(n) ~ (27/4)^n * 105*sqrt(3/(16*Pi))/n^(7/2).
The o.g.f. A(x) satisfies the differential equation
x^2*(4 - 27*x^4)*A''(x) + 2*x*(7 - 27*x)*A'(x) + (6 - 6*x)*A(x) - 420 = 0, with A(0) = 70 and A'(0) = 21.
Comments