cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361043 Array read by descending antidiagonals. A(n, k) is, if n > 0, the number of multiset permutations of {0, 1} of length n * k where the number of occurrences of 1 are multiples of n. A(0, k) = k + 1.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 8, 8, 2, 1, 6, 16, 32, 22, 2, 1, 7, 32, 128, 170, 72, 2, 1, 8, 64, 512, 1366, 992, 254, 2, 1, 9, 128, 2048, 10922, 16512, 6008, 926, 2, 1, 10, 256, 8192, 87382, 261632, 215766, 37130, 3434, 2, 1, 11, 512, 32768, 699050, 4196352, 6643782, 2973350, 232562, 12872, 2, 1
Offset: 0

Views

Author

Peter Luschny, Mar 18 2023

Keywords

Comments

Because of the interchangeability of 0 and 1 in the definition, A(n, k) is even if n, k >= 1. In other words, if the binary representation of a permutation of the defined type is counted, then so is the 1's complement of that representation.

Examples

			Array A(n, k) starts:
 [0] 1, 2,    3,      4,        5,          6,            7, ...  A000027
 [1] 1, 2,    4,      8,       16,         32,           64, ...  A000079
 [2] 1, 2,    8,     32,      128,        512,         2048, ...  A081294
 [3] 1, 2,   22,    170,     1366,      10922,        87382, ...  A007613
 [4] 1, 2,   72,    992,    16512,     261632,      4196352, ...  A070775
 [5] 1, 2,  254,   6008,   215766,    6643782,    215492564, ...  A070782
 [6] 1, 2,  926,  37130,  2973350,  174174002,  11582386286, ...  A070967
 [7] 1, 2, 3434, 232562, 42484682, 4653367842, 644032289258, ...  A094211
.
Triangle T(n, k) starts:
 [0]  1;
 [1]  2,   1;
 [2]  3,   2,    1;
 [3]  4,   4,    2,     1;
 [4]  5,   8,    8,     2,      1;
 [5]  6,  16,   32,    22,      2,      1;
 [6]  7,  32,  128,   170,     72,      2,     1;
 [7]  8,  64,  512,  1366,    992,    254,     2,    1;
 [8]  9, 128, 2048, 10922,  16512,   6008,   926,    2, 1;
 [9] 10, 256, 8192, 87382, 261632, 215766, 37130, 3434, 2, 1;
.
A(2, 2) = 8 = card(0000, 1100, 1010, 1001, 0110, 0101, 0011, 1111).
A(1, 3) = 8 = card(000, 100, 010, 001, 110, 101, 011, 111).
		

Crossrefs

Rows: A000027 (n=0), A000079 (n=1), A081294 (n=2), A007613 (n=3), A070775 (n=4), A070782 (n=5), A070967 (n=6), A094211 (n=7), A070832 (n=8), A094213 (n=9), A070833 (n=10).
Variant: A308500 (upwards antidiagonals).
Cf. A167009 (main diagonal).

Programs

  • Maple
    T := (n, k) -> add(binomial((n - k)*k, j*k), j = 0 .. n-k):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..7);
  • SageMath
    # In Python use this import:
    # from sympy.utilities.iterables import multiset_permutations
    def A(n: int, k: int) -> int:
        if n == 0: return k + 1
        count = 0
        for a in range(0, n * k + 1, n):
            S = [i < a for i in range(n * k)]
            count += Permutations(S).cardinality()
        return count
    def ARow(n: int, size: int) -> list[int]:
        return [A(n, k) for k in range(size)]
    for n in range(6): print(ARow(n, 5))

Formula

A(n, k) = Sum_{j=0..k} binomial(n*k, n*j).
T(n, k) = Sum_{j=0..n-k} binomial((n - k)*k, j*k).