A361043 Array read by descending antidiagonals. A(n, k) is, if n > 0, the number of multiset permutations of {0, 1} of length n * k where the number of occurrences of 1 are multiples of n. A(0, k) = k + 1.
1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 8, 8, 2, 1, 6, 16, 32, 22, 2, 1, 7, 32, 128, 170, 72, 2, 1, 8, 64, 512, 1366, 992, 254, 2, 1, 9, 128, 2048, 10922, 16512, 6008, 926, 2, 1, 10, 256, 8192, 87382, 261632, 215766, 37130, 3434, 2, 1, 11, 512, 32768, 699050, 4196352, 6643782, 2973350, 232562, 12872, 2, 1
Offset: 0
Examples
Array A(n, k) starts: [0] 1, 2, 3, 4, 5, 6, 7, ... A000027 [1] 1, 2, 4, 8, 16, 32, 64, ... A000079 [2] 1, 2, 8, 32, 128, 512, 2048, ... A081294 [3] 1, 2, 22, 170, 1366, 10922, 87382, ... A007613 [4] 1, 2, 72, 992, 16512, 261632, 4196352, ... A070775 [5] 1, 2, 254, 6008, 215766, 6643782, 215492564, ... A070782 [6] 1, 2, 926, 37130, 2973350, 174174002, 11582386286, ... A070967 [7] 1, 2, 3434, 232562, 42484682, 4653367842, 644032289258, ... A094211 . Triangle T(n, k) starts: [0] 1; [1] 2, 1; [2] 3, 2, 1; [3] 4, 4, 2, 1; [4] 5, 8, 8, 2, 1; [5] 6, 16, 32, 22, 2, 1; [6] 7, 32, 128, 170, 72, 2, 1; [7] 8, 64, 512, 1366, 992, 254, 2, 1; [8] 9, 128, 2048, 10922, 16512, 6008, 926, 2, 1; [9] 10, 256, 8192, 87382, 261632, 215766, 37130, 3434, 2, 1; . A(2, 2) = 8 = card(0000, 1100, 1010, 1001, 0110, 0101, 0011, 1111). A(1, 3) = 8 = card(000, 100, 010, 001, 110, 101, 011, 111).
Crossrefs
Programs
-
Maple
T := (n, k) -> add(binomial((n - k)*k, j*k), j = 0 .. n-k): seq(print(seq(T(n, k), k = 0..n)), n = 0..7);
-
SageMath
# In Python use this import: # from sympy.utilities.iterables import multiset_permutations def A(n: int, k: int) -> int: if n == 0: return k + 1 count = 0 for a in range(0, n * k + 1, n): S = [i < a for i in range(n * k)] count += Permutations(S).cardinality() return count def ARow(n: int, size: int) -> list[int]: return [A(n, k) for k in range(size)] for n in range(6): print(ARow(n, 5))
Formula
A(n, k) = Sum_{j=0..k} binomial(n*k, n*j).
T(n, k) = Sum_{j=0..n-k} binomial((n - k)*k, j*k).
Comments