cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361063 Multiplicative with a(p^e) = sigma_2(e), where sigma_2 = A001157.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 10, 5, 1, 1, 5, 1, 1, 1, 21, 1, 5, 1, 5, 1, 1, 1, 10, 5, 1, 10, 5, 1, 1, 1, 26, 1, 1, 1, 25, 1, 1, 1, 10, 1, 1, 1, 5, 5, 1, 1, 21, 5, 5, 1, 5, 1, 10, 1, 10, 1, 1, 1, 5, 1, 1, 5, 50, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 5, 5, 1, 1, 1, 21, 21, 1, 1, 5
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := DivisorSigma[2, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> sigma(x, 2), factor(n)[, 2])); \\ Amiram Eldar, Jan 07 2025
  • Python
    from math import prod
    from sympy import factorint, divisor_sigma
    def A361063(n): return prod(divisor_sigma(e,2) for e in factorint(n).values()) # Chai Wah Wu, Mar 01 2023
    

Formula

Dirichlet g.f.: Product_{primes p} (1 + Sum_{e>=1} sigma_2(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma_2(e) - sigma_2(e-1)) / p^e) = 11.343154585178523783556367128387762286267199879648613456124659589127638983...