A361073 Lexicographically least increasing sequence of triprimes (A014612) a(n) such that a(n) - a(n-1) and a(n) + a(n-1) are also triprimes.
8, 20, 50, 125, 279, 426, 531, 539, 814, 822, 897, 1002, 1010, 1076, 1146, 1209, 1325, 1353, 1398, 1406, 1516, 1558, 1868, 1898, 1948, 1978, 1986, 2013, 2225, 2233, 2397, 2527, 2547, 2575, 2763, 2783, 2810, 2908, 2938, 2946, 3009, 3054, 3081, 3414, 3422, 3452, 3522, 3567, 3714, 3759, 3786, 3813
Offset: 1
Keywords
Examples
a(3) = 50 because 50 = 2^2*5, 50 - a(2) = 30 = 2*3*5 and 50 + a(2) = 70 = 2*5*7 are all products of 3 (not necessarily distinct) primes, and 50 is the least number that works.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A[1]:= 8: for i from 2 to 100 do for x from A[i-1]+8 do if numtheory:-bigomega(x) = 3 and numtheory:-bigomega(x-A[i-1]) = 3 and numtheory:-bigomega(x+A[i-1]) = 3 then A[i]:= x; break fi od od: seq(A[i],i=1..100);
-
Mathematica
s = {m = 8}; Do[p = m + 8; While[{3, 3, 3} != PrimeOmega[{p, m + p, p - m}], p++]; AppendTo[s, m = p], {50}]; s