A361075 Products of exactly 7 distinct odd primes.
4849845, 5870865, 6561555, 7402395, 7912905, 8273265, 8580495, 8843835, 9444435, 10015005, 10140585, 10465455, 10555545, 10705695, 10818885, 10975965, 11565015, 11696685, 11996985, 12267255, 12777765, 12785955, 13096545, 13408395, 13498485, 13528515, 13667745, 13803405
Offset: 1
Keywords
Examples
a(1) = 4849845 = 3*5*7*11*13*17*19 a(9663) = 253808555 = 5*7*11*13*17*19*157 a(9961) = 258573315 = 3*5*7*11*13*17*1013 a(10000) = 259173915 = 3*5*7*11*13*41*421
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Python
import numpy from sympy import nextprime, sieve, primepi k_upto = 14 * 10**6 array = numpy.zeros(k_upto,dtype="i4") sieve_max_number = primepi(nextprime(k_upto // 255255)) for s in range(2,sieve_max_number): array[sieve[s]:k_upto][::sieve[s]] += 1 for s in range(2,sieve_max_number): array[sieve[s]**2:k_upto][::sieve[s]**2] = 0 print([k for k in range(1,k_upto,2) if array[k] == 7])
-
Python
from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi def A361075(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,2,1,7))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024