cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361077 a(n) = largest sqrt(2*n)-smooth divisor of binomial(2*n, n).

Original entry on oeis.org

1, 1, 2, 4, 2, 36, 12, 24, 18, 4, 4, 24, 4, 200, 5400, 720, 90, 540, 300, 600, 180, 120, 120, 10800, 900, 3528, 10584, 784, 280, 1680, 112, 224, 882, 2940, 2940, 504, 28, 56, 4200, 19600, 980, 158760, 7560, 75600, 113400, 5040, 35280, 211680, 44100, 1800, 648, 432, 216, 45360, 1680
Offset: 0

Views

Author

Matthieu Pluntz, Mar 01 2023

Keywords

Comments

The highest exponent in the prime factorization of a(n) is A263922(n), for n >= 2.
a(n) is even for n >= 2.
Binomial(2*n, n)/a(n) and A263931(n)/a(n) are coprime with a(n) and squarefree. By the Erdős squarefree conjecture, proved in 1996, no a(n) with n >= 5 is squarefree.

Examples

			binomial(10, 5) = 2^2*3^2*7. 2,3 <= sqrt(10), 7 > sqrt(10) so a(5) = 2^2*3^2 = 36.
		

Crossrefs

Programs

  • PARI
    a(n) = my(m=sqrtint(2*n), f=factor(binomial(2*n, n), m+1)); for (k=1, #f~, if (f[k,1]>m, f[k,1]=1)); factorback(f); \\ Michel Marcus, Mar 03 2023
  • R
    library(primes)
    n = 2*10^4
    pp = generate_primes(max = sqrt(n))
    npinb = list()
    for(p in pp){
      np = rep(0,n)
      for(t in 1:(log(n)/log(p))) np[p*(1:(n/p))] = np[1:(n/p)] + 1 #multiplicities of prime factor p in the integers
      npinb[[as.character(p)]] = cumsum(np)[2*(1:(n/2))] - 2*cumsum(np[1:(n/2)]) #multiplicities of prime factor p in the central binomial coefficients
    }
    res = rep(1,n/2)
    for(p in pp){
      select = p^2 <= 2*(1:(n/2))
      res[select] = res[select]*p^npinb[[as.character(p)]][select]
    }
    #offset of res is 1
    

Formula

a(n) = binomial(2*n, n) / Product(p prime | p^2 > 2*n, floor(2*n/p) is odd).