cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363592 Number of partitions of [n] such that in each block the smallest element has the same parity as the largest element.

Original entry on oeis.org

1, 1, 1, 3, 6, 20, 55, 223, 761, 3595, 14532, 77818, 361605, 2155525, 11274781, 73822175, 428004750, 3046519516, 19348533739, 148493347507, 1023481273549, 8412534272415, 62450994058052, 546699337652602, 4343869829492281, 40308548641909593, 340994681344324137
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2023

Keywords

Examples

			a(0) = 1: () the empty partition.
a(1) = 1: 1.
a(2) = 1: 1|2.
a(3) = 3: 123, 13|2, 1|2|3.
a(4) = 6: 123|4, 13|24, 13|2|4, 1|234, 1|24|3, 1|2|3|4.
a(5) = 20: 12345, 1235|4, 123|4|5, 1245|3, 125|3|4, 1345|2, 135|24, 13|24|5, 135|2|4, 13|2|4|5, 15|234, 1|234|5, 145|2|3, 15|24|3, 1|24|35, 1|24|3|5, 1|2|345, 15|2|3|4, 1|2|35|4, 1|2|3|4|5.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, x, y, u, v) option remember; `if`(y+u>n, 0, `if`(n=0, 1,
          `if`(y=0, 0, b(n-1, v, u, y-1, x+1)*y)+b(n-1, v, u, y, x+1)+
          `if`(v=0, 0, b(n-1, v-1, u+1, y, x)*v)+b(n-1, v, u, y, x)*(u+x)))
        end:
    a:= n-> b(n, 0$4):
    seq(a(n), n=0..30);

Formula

a(n) mod 2 = A131719(n+1).
Showing 1-1 of 1 results.