cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A361086 a(n) = a(n-1)*(a(n-1)^2 - 1) with a(0) = 2.

Original entry on oeis.org

2, 6, 210, 9260790, 794226015149981778210, 500993769952171221242360491304282624082148055373236400176882790
Offset: 0

Views

Author

M. F. Hasler, Mar 28 2023

Keywords

Comments

a(6) has 189 digits so it is not displayed here.
It appears that the sequence might be squarefree, but this is unproved so far.
If n is the least index such that p^2 | a(n+1) for some prime p, then one must have p^2 | a(n)+1 or p^2 | a(n)-1, and p >= 5.
If p is prime and p^2 | a(n) for some n, then p > 10^6. - Robert Israel, Apr 16 2023
The constant c in the formula can be obtained as exp(log(a(n))/3^n) with more than 3^n/2 significant digits. - M. F. Hasler, Apr 13 2023

Examples

			After a(0) = 2, we have:
a(1) = a(0) * 3 = 6 = A002110(2),
a(2) = a(1) * 5 * 7 = 210 = A002110(4),
a(3) = a(2) * 11 * 19 * 211 = A002110(5) * 19 * 211,
a(4) = a(3) * 23 * 137 * 2939 * 101 * 91691, (*)
a(5) = a(4) * 2381 * 4547 * 73360073674487 * 4111 * 9463 * 20415865295227, (*)
a(6) = a(5) * (a(5)-1) * (a(5)+1)  where  a(5)-1 = 8297 * 2809343 * 1697219017859557 * 12663932268383565339458540396093810087  and
  a(5)+1 = 6529 * 11220511276757421196620288973 * 6838691459094922770231096737923,
etc.
(*) We list first the prime factors of a(n-1)-1, then those of a(n-1)+1.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; procname(n-1)*(procname(n-1)-1)*(procname(n-1)+1) end proc:
    a(0):= 2:
    seq(a(i),i=0..7); # Robert Israel, Apr 16 2023
  • Mathematica
    RecurrenceTable[{a[n] == a[n-1]*(a[n-1]^2 - 1), a[0] == 2}, a, {n, 0, 6}] (* Vaclav Kotesovec, Apr 13 2023 *)
  • PARI
    A361086_first(N)=vector(N,i,N=if(i>1,N*(N^2-1),2))

Formula

a(n) ~ c^(3^n), where c = 1.8114401993215336517307679103877676944735007990106818615618948774060863424... - Vaclav Kotesovec, Apr 13 2023
Showing 1-1 of 1 results.