cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361088 Irregular table, read by rows, where row n holds the tau signature of n, i.e., the shortest sequence (tau(n+k), 0 <= k <= m) that uniquely identifies n; tau = A000005.

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 3, 4, 3, 3, 4, 2, 4, 2, 6, 2, 6, 2, 4, 6, 2, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 5, 2, 2, 6, 2, 6, 6, 2, 6, 2, 6, 4, 4, 2, 6, 4, 4, 2, 8, 4, 4, 2, 8, 4, 2, 8, 2, 8, 3, 8, 3, 3, 4, 4, 6, 2, 4, 4, 6, 2, 8, 4, 6, 2, 8, 2, 6, 2, 8, 2, 6, 2, 8
Offset: 1

Views

Author

M. F. Hasler, Apr 07 2023

Keywords

Comments

Row lengths are given by A309981(n) + 1; see there (and the OEIS wiki page) for examples.

Examples

			The first 20 rows read as follows:
   n | row n: tau-signature of n
  ---+--------------------------
   1 | [1]
   2 | [2, 2]
   3 | [2, 3]
   4 | [3, 2]
   5 | [2, 4, 2]
   6 | [4, 2, 4]
   7 | [2, 4, 3]
   8 | [4, 3]
   9 | [3, 4, 2]
  10 | [4, 2, 6]
  11 | [2, 6, 2, 4]
  12 | [6, 2, 4]
  13 | [2, 4, 4, 5]
  14 | [4, 4, 5]
  15 | [4, 5]
  16 | [5, 2]
  17 | [2, 6, 2, 6]
  18 | [6, 2, 6]
  19 | [2, 6, 4, 4, 2]
  20 | [6, 4, 4, 2, 8]
See the wiki page for proofs.
		

Crossrefs

Cf. A309981, A327265, A161460, A000005 (tau = numdiv).

Programs

  • PARI
    signatures=Map(); LIMIT=10^5 /* This search limit should (possibly dynamically, or by hand) be increased as n grows beyond 100. As of today, the value for n=49 is not yet proven. */
    A361088_row(n,s=0)={if(!s, s=iferr(mapget(signatures,n),E,[]); #s|| for(L=1,oo, s=concat(s,numdiv(n+L-1)); A361088_row(n,s)|| [mapput(signatures,n,[s,LIMIT]); return(s)]); s[2]>=LIMIT&& return(s[1]); s=s[1]; while(A361088_row(n,s), s=concat(s,numdiv(n+#r))); mapput(signatures,n,[s,LIMIT]); return(s)); my(r=iferr(mapget(signatures,s), E,[])); if(!r, r=[n,n], r[2]2, return(r[#r-1]), r[#r]>=LIMIT, return); for(j=max(r[2],n)+1,LIMIT, for(k=1,#s, numdiv(j+k-1)!=s[k]&& next(2)); mapput(signatures,s,[n,j,j]); return(j)); mapput(signatures,s,[n,LIMIT])}