A361088 Irregular table, read by rows, where row n holds the tau signature of n, i.e., the shortest sequence (tau(n+k), 0 <= k <= m) that uniquely identifies n; tau = A000005.
1, 2, 2, 2, 3, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 3, 4, 3, 3, 4, 2, 4, 2, 6, 2, 6, 2, 4, 6, 2, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 5, 2, 2, 6, 2, 6, 6, 2, 6, 2, 6, 4, 4, 2, 6, 4, 4, 2, 8, 4, 4, 2, 8, 4, 2, 8, 2, 8, 3, 8, 3, 3, 4, 4, 6, 2, 4, 4, 6, 2, 8, 4, 6, 2, 8, 2, 6, 2, 8, 2, 6, 2, 8
Offset: 1
Examples
The first 20 rows read as follows: n | row n: tau-signature of n ---+-------------------------- 1 | [1] 2 | [2, 2] 3 | [2, 3] 4 | [3, 2] 5 | [2, 4, 2] 6 | [4, 2, 4] 7 | [2, 4, 3] 8 | [4, 3] 9 | [3, 4, 2] 10 | [4, 2, 6] 11 | [2, 6, 2, 4] 12 | [6, 2, 4] 13 | [2, 4, 4, 5] 14 | [4, 4, 5] 15 | [4, 5] 16 | [5, 2] 17 | [2, 6, 2, 6] 18 | [6, 2, 6] 19 | [2, 6, 4, 4, 2] 20 | [6, 4, 4, 2, 8] See the wiki page for proofs.
Links
- M. F. Hasler et al, tau signature, OEIS Wiki, April 2023.
Programs
-
PARI
signatures=Map(); LIMIT=10^5 /* This search limit should (possibly dynamically, or by hand) be increased as n grows beyond 100. As of today, the value for n=49 is not yet proven. */ A361088_row(n,s=0)={if(!s, s=iferr(mapget(signatures,n),E,[]); #s|| for(L=1,oo, s=concat(s,numdiv(n+L-1)); A361088_row(n,s)|| [mapput(signatures,n,[s,LIMIT]); return(s)]); s[2]>=LIMIT&& return(s[1]); s=s[1]; while(A361088_row(n,s), s=concat(s,numdiv(n+#r))); mapput(signatures,n,[s,LIMIT]); return(s)); my(r=iferr(mapget(signatures,s), E,[])); if(!r, r=[n,n], r[2]
2, return(r[#r-1]), r[#r]>=LIMIT, return); for(j=max(r[2],n)+1,LIMIT, for(k=1,#s, numdiv(j+k-1)!=s[k]&& next(2)); mapput(signatures,s,[n,j,j]); return(j)); mapput(signatures,s,[n,LIMIT])}
Comments