cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361100 Decimal expansion of 2^(2^(2^(2^2))) = 2^^5.

Original entry on oeis.org

2, 0, 0, 3, 5, 2, 9, 9, 3, 0, 4, 0, 6, 8, 4, 6, 4, 6, 4, 9, 7, 9, 0, 7, 2, 3, 5, 1, 5, 6, 0, 2, 5, 5, 7, 5, 0, 4, 4, 7, 8, 2, 5, 4, 7, 5, 5, 6, 9, 7, 5, 1, 4, 1, 9, 2, 6, 5, 0, 1, 6, 9, 7, 3, 7, 1, 0, 8, 9, 4, 0, 5, 9, 5, 5, 6, 3, 1, 1, 4, 5, 3, 0, 8, 9, 5, 0
Offset: 19730

Views

Author

Marco RipĂ , Mar 03 2023

Keywords

Comments

2^0 = 1, 2^1 = 2, 2^2 = 4, 2^2^2 = 2^^3 = (2^2)^2 = 16,
2^2^2^2 = 2^^4 = (((2^2)^2)^2)^2 = 65536
so that 2^2^2^2^2 = 2^^5 = 2^(2^(2^(2^2))) = 2^65536 = 20035299304068464649790723515602557504478254755697514192650169737108940595563...

Examples

			2003529930406846464979072351560255750447825475569751419265016973710894059556311453089506130880933348
(...19529 digits omitted...)
5775699146577530041384717124577965048175856395072895337539755822087777506072339445587895905719156736.
The above example line shows the first one hundred decimal digits and the last one hundred digits with the number of unrepresented digits in parentheses.
		

Crossrefs

Programs

  • Mathematica
    nbrdgt = 100; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[2, 2^2^2^2]
    IntegerDigits[2^65536][[;;100]] (* Paolo Xausa, Jan 31 2024 *)
  • Python
    def A361100(n): return (1<<(1<<(1<<(1<<(1<<1)))))//10**(39458-n)%10 # Chai Wah Wu, Apr 03 2023

Formula

Equals 2^2^2^2^2 = 2^^5 = (((((((((((((((2^2)^2)^2)^2)^2)^2)^2)^2)^2)^2)^2)^2)^2)^2)^2)^2.