A361102 1 together with numbers having at least two distinct prime factors.
1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isa := n -> is(irem(ilcm(seq(1..n-1)), n) = 0): aList := upto -> select(isa, [seq(1..upto)]): aList(112); # Peter Luschny, May 17 2023
-
Mathematica
Select[Range[120], Not@*PrimePowerQ] (* Michael De Vlieger, May 17 2023 *)
-
Python
from sympy import primepi, integer_nthroot def A361102(n): def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Aug 31 2024
-
SageMath
def A361102List(upto: int) -> list[int]: return sorted(Set(1..upto).difference(prime_powers(upto))) print(A361102List(112)) # Peter Luschny, May 17 2023
Formula
From Peter Luschny and Michael De Vlieger, May 17 2023: (Start)
k is in this sequence <=> k divides lcm(1, 2, ..., k-1). (End)
Extensions
Offset set to 1 by Peter Luschny, May 17 2023
Comments