cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361102 1 together with numbers having at least two distinct prime factors.

Original entry on oeis.org

1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112
Offset: 1

Views

Author

Keywords

Comments

This is the union of 1 and A024619. It is the sequence C used in the definition of A360519. Since C is central to the analysis of A360519 it deserves its own entry.
This has the same relationship to A024619 as A000469 does to A120944 for squarefree numbers.

Crossrefs

Programs

  • Maple
    isa := n -> is(irem(ilcm(seq(1..n-1)), n) = 0):
    aList := upto -> select(isa, [seq(1..upto)]):
    aList(112); # Peter Luschny, May 17 2023
  • Mathematica
    Select[Range[120], Not@*PrimePowerQ] (* Michael De Vlieger, May 17 2023 *)
  • Python
    from sympy import primepi, integer_nthroot
    def A361102(n):
        def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024
  • SageMath
    def A361102List(upto: int) -> list[int]:
        return sorted(Set(1..upto).difference(prime_powers(upto)))
    print(A361102List(112))  # Peter Luschny, May 17 2023
    

Formula

From Peter Luschny and Michael De Vlieger, May 17 2023: (Start)
The sequence is the complement of the prime powers in the positive integers, a = A000027 \ A246655.
k is in this sequence <=> k divides lcm(1, 2, ..., k-1). (End)
This sequence is {1} U { A120944 U A126706 } = {1} U A024619. - Michael De Vlieger, May 17 2023

Extensions

Offset set to 1 by Peter Luschny, May 17 2023