A361132 Multiplicative with a(p^e) = e^4, p prime and e > 0.
1, 1, 1, 16, 1, 1, 1, 81, 16, 1, 1, 16, 1, 1, 1, 256, 1, 16, 1, 16, 1, 1, 1, 81, 16, 1, 81, 16, 1, 1, 1, 625, 1, 1, 1, 256, 1, 1, 1, 81, 1, 1, 1, 16, 16, 1, 1, 256, 16, 16, 1, 16, 1, 81, 1, 81, 1, 1, 1, 16, 1, 1, 16, 1296, 1, 1, 1, 16, 1, 1, 1, 1296, 1, 1, 16, 16
Offset: 1
Links
- Vaclav Kotesovec, Plot of log(log(c(k))) / k, for k = 1..40
Programs
-
Mathematica
g[p_, e_] := e^4; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 - 4*X + 21*X^2 + X^3 + 6*X^4 - X^5)/(1-X)^5)[n], ", "))
Formula
a(n) = A005361(n)^4.
Dirichlet g.f.: Product_{primes p} (1 + p^s*(p^(3*s) + 11*p^(2*s) + 11*p^s + 1) / (p^s - 1)^5).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{primes p} (1 + (15*p^3 + 5*p^2 + 5*p - 1) / (p*(p-1)^4)) = 5922.43654748315227690838901234893132297258444672...
Comments