cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361132 Multiplicative with a(p^e) = e^4, p prime and e > 0.

Original entry on oeis.org

1, 1, 1, 16, 1, 1, 1, 81, 16, 1, 1, 16, 1, 1, 1, 256, 1, 16, 1, 16, 1, 1, 1, 81, 16, 1, 81, 16, 1, 1, 1, 625, 1, 1, 1, 256, 1, 1, 1, 81, 1, 1, 1, 16, 16, 1, 1, 256, 16, 16, 1, 16, 1, 81, 1, 81, 1, 1, 1, 16, 1, 1, 16, 1296, 1, 1, 1, 16, 1, 1, 1, 1296, 1, 1, 16, 16
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 02 2023, following a suggestion from Amiram Eldar

Keywords

Comments

In general, if the function is multiplicative with a(p^e) = e^k, where k>=1, then Sum_{m=1..n} a(m) ~ c(k) * n, where c(k) = Product_{primes p} (1 + PolyLog(-k, 1/p)) * (1 - 1/p).
Equivalently, c(k) = Product_{primes p} (1 + Sum_{j>=2} (j^k - (j-1)^k) / p^j).
Sum_{m=1..n} A005361(m)^k ~ c(k) * n.
Table of logarithms of the first twenty constants c(k):
log(c1) = 0.6645400902595784780106197346845697376257107319484837534113838...
log(c2) = 2.1027190979191945200514651557327047986978773488049101019457040...
log(c3) = 4.6968549904993458045898305766669061238379561861949323835425304...
log(c4) = 8.6865032221694100694964858752580123427478996289429265630701524...
log(c5) = 14.2913129298819954890384122051888143114132125173972994127345117...
log(c6) = 21.8135511355940060754244319875442802379763506456537810297977335...
log(c7) = 31.6936244245134941047326145621097555406387768809071583785926496...
log(c8) = 44.5357450879229051636129496942971942282070021854681649075237793...
log(c9) = 61.1279313139359633940353674601273793850149492879803908371116076...
log(c10) = 82.5520903493060704390063479960346732401820956158379186266389560...
log(c11) = 110.2954981238150788264027780431082219466660734768697563026966486...
log(c12) = 146.3390378386537094475359791093275236623437203145309460650602987...
log(c13) = 193.3102629498150337396691694808577709247583271151043344733643302...
log(c14) = 254.7562108044458078036208253682699240853829328072028848109791635...
log(c15) = 335.5155584889434205169760027607421364026263435517505529418223175...
log(c16) = 442.1708823748701851244490135727342670822854621013078138839028927...
log(c17) = 583.6971600757633563987486782501478518757572163549653222049269791...
log(c18) = 772.3363960260522276224001927946529683262139600086441840227950538...
log(c19) = 1024.7789861796186438478485897805332932014500908873437888887485298...
log(c20) = 1363.8429394936892771815120584792965902670785987496833459129791344...
Conjecture: log(log(c(k)))/k converges to a constant (around 0.315).

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := e^4; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 4*X + 21*X^2 + X^3 + 6*X^4 - X^5)/(1-X)^5)[n], ", "))

Formula

a(n) = A005361(n)^4.
Dirichlet g.f.: Product_{primes p} (1 + p^s*(p^(3*s) + 11*p^(2*s) + 11*p^s + 1) / (p^s - 1)^5).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{primes p} (1 + (15*p^3 + 5*p^2 + 5*p - 1) / (p*(p-1)^4)) = 5922.43654748315227690838901234893132297258444672...