cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361142 E.g.f. satisfies A(x) = exp( x*A(x)^2/(1 - x*A(x)) ).

Original entry on oeis.org

1, 1, 7, 91, 1773, 46401, 1529593, 60911103, 2845757449, 152663425633, 9250206248781, 624880915165959, 46569571425664477, 3795729136868379777, 335902071304953561073, 32074779600414913885231, 3287242849289861637185937, 359917016243351870997841473
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[(n+k+1)^(k-1) * Binomial[n-1,n-k]/k!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 03 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n, (n+k+1)^(k-1)*binomial(n-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n+k+1)^(k-1) * binomial(n-1,n-k)/k!.
a(n) ~ s^2 * sqrt((2 - r*s)/(2 + r*s*(-2 + s*(2 - r*s)^2))) * n^(n-1) / (exp(n) * r^(n - 1/2)), where r = 0.14220768719194290600038416000340972911571484385125... and s = 1.549730657609106944767484487465870359529391502493... are roots of the system of equations exp(r*s^2/(1 - r*s)) = s, r*s^2*(2 - r*s) = (1 - r*s)^2. - Vaclav Kotesovec, Mar 03 2023

A365016 E.g.f. satisfies A(x) = exp( x*A(x)^3/(1 - x * A(x)^2) ).

Original entry on oeis.org

1, 1, 9, 160, 4345, 159796, 7434199, 418864426, 27732988609, 2110729489048, 181587635465671, 17426825999144926, 1845855944285411425, 213900244312057975348, 26919356609721984494311, 3656322063766897691641666, 533110345129065969043548289
Offset: 0

Views

Author

Seiichi Manyama, Aug 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#!*Sum[ (2 # + k + 1)^(k - 1)*Binomial[# - 1, # - k]/k!, {k, 0, #}] &, 17, 0] (* Michael De Vlieger, Aug 18 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n, (2*n+k+1)^(k-1)*binomial(n-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (2*n+k+1)^(k-1) * binomial(n-1,n-k)/k!.
Showing 1-2 of 2 results.