A361174 The sum of the exponential squarefree exponential divisors (or e-squarefree e-divisors) of n.
1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 6, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 18, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67, 102
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, On certain arithmetic functions involving exponential divisors, II, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 27 (2007), pp. 155-166; arXiv preprint, arXiv:0708.3557 [math.NT], 2007-2009.
- Xiangzhen Zhao, Min Liu, and Yu Huang, Mean value for the function t^(e)(n) over square-full numbers, Scientia Magna, Vol. 8, No. 3 (2012), pp. 110-114.
- Index entries for sequences related to divisors of numbers.
Programs
-
Mathematica
f[p_, e_] := DivisorSum[e, p^# &, SquareFreeQ[#] &]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
ff(p, e) = sumdiv(e, d, if(issquarefree(d), p^d, 0)); a(n) = {my(f=factor(n)); prod(i=1, #f~, ff(f[i, 1], f[i, 2]));}
Formula
Multiplicative with a(p^e) = Sum_{d|e, d squarefree} p^d.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, c = Product_{p prime} (1 + Sum_{k>=2} (a(p^k) - p*a(p^(k-1)))/p^(2*k)) = 1.08989220899432387559... . - Amiram Eldar, Feb 13 2024
Comments