A361179 a(n) = sigma(n)^4.
1, 81, 256, 2401, 1296, 20736, 4096, 50625, 28561, 104976, 20736, 614656, 38416, 331776, 331776, 923521, 104976, 2313441, 160000, 3111696, 1048576, 1679616, 331776, 12960000, 923521, 3111696, 2560000, 9834496, 810000, 26873856, 1048576, 15752961, 5308416
Offset: 1
Programs
-
Mathematica
Table[DivisorSigma[1, n]^4, {n, 1, 50}]
-
PARI
a(n) = sigma(n)^4;
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 + p^2*X)*(1 + 3*p*X + 4*p^2*X + 3*p^3*X + p^4*X^2)/((1 - X)*(1 - p*X)*(1 - p^2*X)*(1 - p^3*X)*(1 - p^4*X)))[n], ", "))
Formula
Multiplicative with a(p^e) = ((p^(e+1)-1)/(p-1))^4.
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-2) * zeta(s-3) * zeta(s-4) * Product_{primes p} (1 + 1/p^(3*s-6) + 3/p^(2*s-3) + 5/p^(2*s-4) + 3/p^(2*s-5) + 3/p^(s-1) + 5/p^(s-2) + 3/p^(s-3)).
Sum_{k=1..n} a(k) ~ c * Pi^6 * zeta(3) * zeta(5) * n^5 / 2700, where c = Product_{primes p} (1 + 3/p^2 + 5/p^3 + 3/p^4 + 3/p^5 + 5/p^6 + 3/p^7 + 1/p^9) = 6.0446828090651437986928739783339791032197283386377841627594461874871547391...
Comments