cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A361132 Multiplicative with a(p^e) = e^4, p prime and e > 0.

Original entry on oeis.org

1, 1, 1, 16, 1, 1, 1, 81, 16, 1, 1, 16, 1, 1, 1, 256, 1, 16, 1, 16, 1, 1, 1, 81, 16, 1, 81, 16, 1, 1, 1, 625, 1, 1, 1, 256, 1, 1, 1, 81, 1, 1, 1, 16, 16, 1, 1, 256, 16, 16, 1, 16, 1, 81, 1, 81, 1, 1, 1, 16, 1, 1, 16, 1296, 1, 1, 1, 16, 1, 1, 1, 1296, 1, 1, 16, 16
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 02 2023, following a suggestion from Amiram Eldar

Keywords

Comments

In general, if the function is multiplicative with a(p^e) = e^k, where k>=1, then Sum_{m=1..n} a(m) ~ c(k) * n, where c(k) = Product_{primes p} (1 + PolyLog(-k, 1/p)) * (1 - 1/p).
Equivalently, c(k) = Product_{primes p} (1 + Sum_{j>=2} (j^k - (j-1)^k) / p^j).
Sum_{m=1..n} A005361(m)^k ~ c(k) * n.
Table of logarithms of the first twenty constants c(k):
log(c1) = 0.6645400902595784780106197346845697376257107319484837534113838...
log(c2) = 2.1027190979191945200514651557327047986978773488049101019457040...
log(c3) = 4.6968549904993458045898305766669061238379561861949323835425304...
log(c4) = 8.6865032221694100694964858752580123427478996289429265630701524...
log(c5) = 14.2913129298819954890384122051888143114132125173972994127345117...
log(c6) = 21.8135511355940060754244319875442802379763506456537810297977335...
log(c7) = 31.6936244245134941047326145621097555406387768809071583785926496...
log(c8) = 44.5357450879229051636129496942971942282070021854681649075237793...
log(c9) = 61.1279313139359633940353674601273793850149492879803908371116076...
log(c10) = 82.5520903493060704390063479960346732401820956158379186266389560...
log(c11) = 110.2954981238150788264027780431082219466660734768697563026966486...
log(c12) = 146.3390378386537094475359791093275236623437203145309460650602987...
log(c13) = 193.3102629498150337396691694808577709247583271151043344733643302...
log(c14) = 254.7562108044458078036208253682699240853829328072028848109791635...
log(c15) = 335.5155584889434205169760027607421364026263435517505529418223175...
log(c16) = 442.1708823748701851244490135727342670822854621013078138839028927...
log(c17) = 583.6971600757633563987486782501478518757572163549653222049269791...
log(c18) = 772.3363960260522276224001927946529683262139600086441840227950538...
log(c19) = 1024.7789861796186438478485897805332932014500908873437888887485298...
log(c20) = 1363.8429394936892771815120584792965902670785987496833459129791344...
Conjecture: log(log(c(k)))/k converges to a constant (around 0.315).

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := e^4; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 4*X + 21*X^2 + X^3 + 6*X^4 - X^5)/(1-X)^5)[n], ", "))

Formula

a(n) = A005361(n)^4.
Dirichlet g.f.: Product_{primes p} (1 + p^s*(p^(3*s) + 11*p^(2*s) + 11*p^s + 1) / (p^s - 1)^5).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{primes p} (1 + (15*p^3 + 5*p^2 + 5*p - 1) / (p*(p-1)^4)) = 5922.43654748315227690838901234893132297258444672...

A361148 a(n) = phi(n)^4.

Original entry on oeis.org

1, 1, 16, 16, 256, 16, 1296, 256, 1296, 256, 10000, 256, 20736, 1296, 4096, 4096, 65536, 1296, 104976, 4096, 20736, 10000, 234256, 4096, 160000, 20736, 104976, 20736, 614656, 4096, 810000, 65536, 160000, 65536, 331776, 20736, 1679616, 104976, 331776, 65536, 2560000
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 02 2023

Keywords

Comments

In general, for k>=1, Sum_{m=1..n} phi(m)^k ~ c(k) * n^(k+1) / (k+1).
Table of the first twenty constants c(k):
c1 = 0.6079271018540266286632767792583658334261526480334792930736...
c2 = 0.4282495056770944402187657075818235461212985133559361440319...
c3 = 0.3371878737915899719616928161521582449491541277581639388802...
c4 = 0.2862564715115608911732883400866386479560747005250468681615...
c5 = 0.2550316684059564308661179534476184539887434047229867871927...
c6 = 0.2342690874743831026992085481001750961630443094403694748409...
c7 = 0.2194845388428573186801010214226853865762414525869501954550...
c8 = 0.2083553180392308846240883587603960475166426933863125773262...
c9 = 0.1996016550942289223053750541784521301740825495040856984950...
c10 = 0.1924764951305819663569723926235916851341834741671794581256...
c11 = 0.1865198318046079731059147989571847359151227252097897755685...
c12 = 0.1814343147960482243026212589426877406632573154701351352790...
c13 = 0.1770192204728143035012153190352692532613146649385520287635...
c14 = 0.1731338036872585521607716180505314246174563305338731073703...
c15 = 0.1696760784770144194638735708052066949428247152918280392147...
c16 = 0.1665700322333281768929516390245288052095235102037486400080...
c17 = 0.1637576294807392765019551841269187995536332906534705685240...
c18 = 0.1611936368897236567526886186599877745065426644021588804182...
c19 = 0.1588421683609925408830108209202958349394621277940566066627...
c20 = 0.1566743130878534775247182243921577941535243896576096188342...
c1 = A059956 = 6/Pi^2, c2 = A065464.
Conjecture: c(k)*log(k) converges to a constant (around 0.534).

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[n]^4, {n, 1, 50}]
  • PARI
    a(n) = eulerphi(n)^4;
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - 4*p*X + 6*p^2*X - 4*p^3*X) / (1 - p^4*X))[n], ", "))

Formula

Multiplicative with a(p^e) = (p-1)^4 * p^(4*e-4).
Dirichlet g.f.: zeta(s-4) * Product_{primes p} (1 + 1/p^s - 4/p^(s-1) + 6/p^(s-2) - 4/p^(s-3)).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = Product_{primes p} (1 - 4/p^2 + 6/p^3 - 4/p^4 + 1/p^5) = 0.286256471511560891173288340086638647956074700525046868161...
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^4/((p-1)^4*(p^4-1))) = 2.20815077889083518654... . - Amiram Eldar, Sep 01 2023

A205797 G.f.: A(x) = exp( Sum_{n>=1} sigma(n)^4 * x^n/n ).

Original entry on oeis.org

1, 1, 41, 126, 1526, 5185, 46920, 176865, 1254608, 4986548, 30563031, 123868761, 683127011, 2793828323, 14223836013, 58127497582, 278433541834, 1130954381904, 5159127957638, 20767403083249, 91032595281699, 362455763000997, 1536849042738162
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Comments

Compare with g.f. for partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.

Examples

			G.f.: A(x) = 1 + x + 41*x^2 + 126*x^3 + 1526*x^4 + 5185*x^5 +...
such that, by definition,
log(A(x)) = x + 3^4*x^2/2 + 4^4*x^3/3 + 7^4*x^4/4 + 6^4*x^5/5 + 12^4*x^6/6 +...
		

Crossrefs

Cf. A156302, A178933, A000203 (sigma), A000041 (partitions), A361179.

Programs

  • Mathematica
    nmax = 30; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSigma[1, k]^4 * a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 30 2024 *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, sigma(k)^4*x^k/k)+x*O(x^n)), n)} /* Paul D. Hanna */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, sum(k=1, n\m, sigma(m*k)^3*x^(m*k)/m)+x*O(x^n))), n)} /* Paul D. Hanna */
    
  • PARI
    a(n)=if(n==0, 1, (1/n)*sum(k=1, n, sigma(k)^4*a(n-k)))

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma(k)^4*a(n-k) for n>0, with a(0) = 1.
G.f.: exp( Sum_{n>=1} Sum_{k>=1} sigma(n*k)^3 * x^(n*k) / n ).
From Vaclav Kotesovec, Oct 30 2024: (Start)
log(a(n)) ~ 5^(4/5) * c^(1/5) * Pi^(6/5) * zeta(3)^(1/5) * zeta(5)^(1/5) * n^(4/5) / (2^(9/5) * 3^(2/5)), where c = Product_{primes p} (1 + 3/p^2 + 5/p^3 + 3/p^4 + 3/p^5 + 5/p^6 + 3/p^7 + 1/p^9) = 6.04468280906514379869287397833397910321972833863778...
Equivalently, log(a(n)) ~ 3.967005157823944635858584839447899089435134... * n^(4/5). (End)

A361147 a(n) = sigma(n)^3.

Original entry on oeis.org

1, 27, 64, 343, 216, 1728, 512, 3375, 2197, 5832, 1728, 21952, 2744, 13824, 13824, 29791, 5832, 59319, 8000, 74088, 32768, 46656, 13824, 216000, 29791, 74088, 64000, 175616, 27000, 373248, 32768, 250047, 110592, 157464, 110592, 753571, 54872, 216000, 175616
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 02 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^3, {n, 1, 50}]
  • PARI
    a(n) = sigma(n)^3;
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X*(2 + 2*p + p^2*X)) / ((1-X)*(1-p*X)*(1-p^2*X)*(1-p^3*X)))[n], ", "))

Formula

Multiplicative with a(p^e) = ((p^(e+1)-1)/(p-1))^3.
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-2) * zeta(s-3) * Product_{primes p} (1 + 1/p^(2*s-3) + 2/p^(s-1) + 2/p^(s-2)).
Sum_{k=1..n} a(k) ~ c * Pi^6 * zeta(3) * n^4 / 2160, where c = Product_{primes p} (1 + 2/p^2 + 2/p^3 + 1/p^5) = 2.83598357433419286770442457158038489640898183...
a(n) = A000578(A000203(n)).
Showing 1-4 of 4 results.