cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361229 G.f. A(x) satisfies A(x) = 1 + x^4 * (A(x) / (1 - x))^2.

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 3, 4, 7, 14, 27, 48, 84, 152, 284, 532, 987, 1826, 3401, 6384, 12024, 22656, 42728, 80780, 153151, 290970, 553601, 1054688, 2012373, 3845646, 7359345, 14100692, 27048061, 51941850, 99855389, 192163904, 370159216, 713672568, 1377168108, 2659729380
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2023

Keywords

Crossrefs

Partial sums give A023426.

Programs

  • Maple
    A361229 := proc(n)
        add(binomial(n-2*k-1,n-4*k) * binomial(2*k,k) / (k+1),k=0..floor(n/4)) ;
    end proc:
    seq(A361229(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-2*k-1, n-4*k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2*(1-x) / (1-x+sqrt((1-x)^2-4*x^4)).
a(n) = Sum_{k=0..floor(n/4)} binomial(n-2*k-1,n-4*k) * binomial(2*k,k) / (k+1).
D-finite with recurrence (n+4)*a(n) +(-3*n-7)*a(n-1) +(3*n+2)*a(n-2) +(-n+1)*a(n-3) +4*(-n+2)*a(n-4) +4*(n-4)*a(n-5)=0. - R. J. Mathar, Dec 04 2023