A361233 Numbers k such that the "Pisano cycle modulo k shape" is bounded.
1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 18, 19, 20, 22, 24, 28, 29, 30, 31, 32, 36, 37, 38, 40, 42, 44, 46, 48, 50, 52, 53, 54, 55, 56, 58, 59, 60, 62, 64, 66, 68, 70, 71, 72, 76, 78, 79, 80, 82, 84, 86, 88, 89, 90, 92, 94, 95, 96, 98, 100, 101, 102, 104, 106, 108, 109, 110, 112
Offset: 1
Keywords
Examples
For k = 2 the Pisano Cycle modulo 2 of the Fibonacci numbers is (1,1,0) and the shape obtained by iterating the process described above is a 1-unit square, which is bounded, so a(2) = 2.
Links
- Luca Onnis, Shape for n = 14
- Luca Onnis, Shape for n = 499
- Luca Onnis, Shape for n = 751
- Luca Onnis, JavaScript p5 code for the graphic of the shape
- Jacob Yatsko, A new way to look at Fibonacci numbers (23 Feb 2020).
Programs
-
PARI
\\ P(n) gives n-th row of A161553. P(n)={my(L=List([0]), X=Mod([1,1;1,0],n), I=Mod([1,0;0,1],n), M=X, k=1); while(M<>I, k++; M*=X; listput(L, lift(M[2,2]))); Vec(L)} isok(n)={my(s=P(n), x=0, y=0, dx=1, dy=0, t); for(i=1, #s, if(s[i], [dx,dy]=if(s[i]%2, [dy, -dx], [-dy, dx]); x+=dx; y+=dy)); (x==0&&y==0) || dx!=1} select(isok, [1..100]) \\ Andrew Howroyd, Mar 05 2023
Comments